Subscribe to RSS
DOI: 10.1055/s-0040-1706483
Asymmetric Synthesis of Isoxazol-5-ones and Isoxazolidin-5-ones
A.M. wants to thank the Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR) and Università degli Studi di Salerno for financial support. A.E. and M.W. gratefully acknowledge financial support from the Austrian Science Fund (FWF): Project No. P30237. J.F.B. acknowledge that this work has been partially supported by the Institut National des Sciences Appliquées Rouen ( INSA Rouen), Université de Rouen, the Centre National de la Recherche Scientifique (CNRS), European Regional Development Fund, and Labex SynOrg (ANR-11-LABX-0029), and by Region Normandie (CRUNCh network).
Abstract
Isoxazol-5-ones and isoxazolidin-5-ones represent two important classes of heterocycles, with several applications as bioactive compounds and as versatile building blocks for further transformations. Unlike the parent aromatic isoxazoles, the presence of one or two stereocenters in the ring renders their asymmetric construction particularly important. In this review, starting from the description of general features and differences between these two related compound families, we present an overview on the most important enantioselective synthesis strategies to access these heterocycles. Both chiral metal catalysts and organocatalysts have recently been successfully employed for this task and some of the most promising approaches will be discussed.
1 Introduction
2 Isoxazol-5-ones as Nucleophiles
2.1 Isoxazol-5-ones as C-Nucleophiles
2.2 Isoxazol-5-ones as N-Nucleophiles
2.3 Isoxazol-5-ones as C-Nucleophiles in Cyclization Processes
3 Asymmetric Construction of Isoxazolidin-5-ones
3.1 Enantioselective α-Functionalizations of Isoxazolidin-5-ones
4 Arylideneisoxazol-5-ones in Conjugated Addition
5 Conclusions
Key words
asymmetric catalysis - organocatalysis - metal catalysts - heterocycles - chiral building blocksPublication History
Received: 20 July 2020
Accepted after revision: 22 August 2020
Article published online:
12 October 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Lambein F, Kuo Y.-H, Van Parijs R. Heterocycles 1976; 4: 567
- 2 Rozan P, Kuo Y.-H, Lambein F. Phytochemistry 2001; 58: 281
- 3a Kuo Y.-H, Ikegami F, Lambein F. Phytochemistry 1998; 38: 32
- 3b Rozan P, Kuo YH, Lambein F. Amino Acids 2001; 20: 319
- 4a Iwama T, Nagai Y, Tamura N, Harada S, Nagaoka A. Eur. J. Pharmacol. 1991; 197: 187
- 4b Yu M, Wang J, Tang K, Shi X, Wang S, Zhu W.-M, Zhang X.-H. Microbiology 2012; 158: 835
- 4c Becker T, Pasteels J, Weigel C, Dahse H.-M, Voigt K, Boland W. Nat. Prod. Rep. 2017; 34: 343
- 5 Hedner E, Sjögren M, Hodzic S, Andersson R, Göransson U, Jonsson PR, Bohlin L. J. Nat. Prod. 2008; 71: 330
- 6a Sugeno W, Matsuda K. Appl. Entomol. Zool. 2002; 37: 191
- 6b Becker T, Ploss K, Boland W. Org. Biomol. Chem. 2016; 14: 6274
- 7a Kafle B, Aher NG, Khadka D, Park H, Cho H. Chem. Asian J. 2011; 6: 2073
- 7b Kees KL, Caggiano TJ, Steiner KE, Fitzgerald JJ. Jr, Kates MJ, Christos TE, Kulishoff JM. Jr, Moore RD, McCaleb ML. J. Med. Chem. 1995; 38: 617
- 8a Mahajan SS, Scian M, Sripathy S, Posakony J, Lao U, Loe TK, Leko V, Thalhofer A, Schuler AD, Bedalov A, Simon JA. J. Med. Chem. 2014; 57: 3283
- 8b Tong Y, Stewart KD, Thomas S, Przytulinska M, Johnson EF, Klinghofer V, Leverson J, McCall O, Soni NB, Luo Y, Lin N.-H, Sowin TJ, Giranda VL, Penning TD. Bioorg. Med. Chem. Lett. 2008; 18: 206
- 9 Hung TV, Janowski WK, Prager RH. Aust. J. Chem. 1985; 38: 931
- 10a Vergelli F, Schepetkin CI. A, Crocetti L, Iacovone A, Giovannoni MP, Guerrini G, Khlebnikov AI, Ciattini S, Ciciani G, Quinn MT. J. Enzyme Inhib. Med. Chem. 2017; 32: 821
- 10b Giovannoni MP, Crocetti L, Cantini N, Guerrini G, Vergelli C, Iacovone A, Teodori E, Schepetkin IA, Quinn MT, Ciattini S, Rossi P, Paoli P. Drug Dev. Res. 2020; 81: 338
- 11 Snyder LB, Meng Z, Mate R, Andrea SV. D, Marinier A, Quesnelle CA, Gill P, DenBleyker KL, Fung-Tomc JC, Frosco MB, Martel A, Barretta JF, Bronson JJ. Bioorg. Med. Chem. Lett. 2004; 14: 4735
- 12 Laufer SA, Margutti S. J. Med. Chem. 2008; 51: 2580
- 13 Laurent P, Braekman J.-C, Daloze D. Top. Curr. Chem. 2005; 240: 167
- 14a Kiyani H, Ghorbani F. Heterocycl. Lett. 2013; 3: 145
- 14b Conti P, Tamborini L, Pinto A, Sola L, Ettari R, Mercurio C, Micheli CD. Eur. J. Med. Chem. 2010; 45: 4331
- 14c Deng B.-L, Cullen MD, Zhou Z, Hartman TL, Buckheit RW. Jr, Pannecouque C, Clercq ED, Fanwick PE, Cushman M. Bioorg. Med. Chem. 2006; 14: 2366
- 15 Ferrazzano L, Viola A, Lonati E, Bulbarelli A, Musumeci R, Cocuzza C, Lombardo M, Tolomelli A. Eur. J. Med. Chem. 2016; 124: 906
- 16 Karabasanagouda T, Adhikari TA. V, Girisha M. Indian J. Chem. 2009; 48: 430
- 17 Dietrich H, Döller U, Gatzweiler E, Helmke H, Lehr S, Machettira A, Mcleod M, Müller T, Peters O, Rosinger C, Schmutzler D. WO 2018178008A1, 2018
- 18 Basak P, Dey S, Ghosh P. ChemistrySelect 2020; 5: 626
- 19 Becker T, Görls H, Pauls G, Wedekind R, Kai M, Boland W. J. Org. Chem. 2013; 78: 12779
- 20 Feng G, Satoshi I, Takuya Y, Akira U, Yukari S, Hiroshi M. Plant Sci. 2019; 283: 321
- 21a Lehtonen K, Summers LA, Carter GA. Pestic. Sci. 1972; 3: 357
- 21b Kömürcü ŞG, Rollas S, Yilmaz N, Çevikbaş A. Drug Metabol. Drug Interact. 1995; 12: 161
- 22 Hong S, Wei-Bing F, Feng C, De-Qing S. J. Heterocycl. Chem. 2013; 50: 1381
- 23a da Silva AF, Fernandes AA. G, Thurow S, Stivanin ML, Jurberg ID. Synthesis 2018; 50: 2473
- 23b Fernandes AA. G, da Silva AF, Thurow S, Okada CY. Jr, Jurberg ID. Targets Heterocycl. Syst. 2018; 22: 409
- 24 Review: Zard SZ. Chem. Commun. 2002; 1555
- 25a Abidi SL. J. Chem. Soc., Chem. Commun. 1985; 1222
- 25b Abidi SL. Tetrahedron Lett. 1986; 27: 267
- 25c Abidi SL. J. Org. Chem. 1986; 51: 2687
- 25d Corey EJ, Seibel WL, Kappos JC. Tetrahedron Lett. 1987; 28: 4921
- 25e Boivin J, Elkaim L, Ferro PG, Zard SZ. Tetrahedron Lett. 1991; 32: 5321
- 26 Annibaletto J, Oudeyer S, Levacher V, Brière J.-F. Synthesis 2017; 49: 2117
- 27 Benson SW. J. Chem. Educ. 1965; 42: 502
- 28a Baldwin JE, Harwood LM, Lombard MJ. Tetrahedron 1984; 40: 4363
- 28b Baldwin JE, Adlington RM, Mellor LC. Tetrahedron 1994; 50: 5049
- 28c Pearson C, Rinehart KL, Sugano M, Costerison JR. Org. Lett. 2000; 2: 2901
- 28d Lee H.-S, Park J.-S, Kim BM, Gellman SH. J. Org. Chem. 2003; 68: 1575
- 29 Rieckhoff S, Meisner J, Kästner J, Frey W, Peters R. Angew. Chem. Int. Ed. 2018; 57: 1404
- 30 Meng W.-T, Zheng Y, Nie J, Xiong H.-Y, Ma J.-A. J. Org. Chem. 2013; 78: 559
- 31 Zhang H, Wang B, Cui L, Bao X, Qu J, Song Y. Eur. J. Org. Chem. 2015; 2143
- 32 Hellmuth T, Frey W, Peters R. Angew. Chem. Int. Ed. 2015; 54: 2788
- 33 Torán R, Vila C, Sanz-Marco A, Muñoz MC, Pedro JR, Blay G. Eur. J. Org. Chem. 2020; 627
- 34 Qi S.-S, Jiang Z.-H, Chu M.-M, Wang Y.-F, Chen X.-Y, Ju W.-Z, Xu D.-Q. Org. Biomol. Chem. 2020; 18: 2398
- 35 Xiao W, Zhou Z, Yang Q.-Q, Du W, Chen Y.-C. Adv. Synth. Catal. 2018; 360: 3526
- 36 Li L, Luo P, Deng Y, Shao Z. Angew. Chem. Int. Ed. 2019; 58: 4710
- 37a Baldwin SW, Aubé J. Tetrahedron Lett. 1987; 28: 179
- 37b Ishikawa T, Nagai K, Kudoh T, Saito S. Synlett 1995; 1171
- 37c Niu D, Zhao K. J. Am. Chem. Soc. 1999; 121: 2456
- 38a Sibi MP, Liu M. Org. Lett. 2000; 2: 3393
- 38b Sibi MP, Prabagaran N, Ghorpade SG, Jasperse CP. J. Am. Chem. Soc. 2003; 125: 11796
- 39 Izumi S, Kobayashi Y, Takemoto Y. Org. Lett. 2016; 18: 696
- 40 Berini C, Sebban M, Oulyadi H, Sanselme M, Levacher V, Brière J.-F. Org. Lett. 2015; 17: 5408
- 41a Ibrahem I, Rios R, Vesely J, Zhao G.-L, Córdova A. Chem. Commun. 2007; 849
- 41b Pou A, Moyano A. Eur. J. Org. Chem. 2013; 3103
- 41c Jiang H.-T, Gao H.-L, Ge C.-S. Chin. Chem. Lett. 2017; 28: 471
- 41d Lai J, Sayalero S, Ferrali A, Osorio-Planes L, Bravo F, Rodríguez-Escrich C, Pericàs MA. Adv. Synth. Catal. 2018; 360: 2914
- 41e Gao H, Yu J, Ge C, Jiang Q. Molecules 2018; 23: 1440
- 42 Zhang H, Zhang S.-J, Zhou Q, Dong L, Chen Y.-C. Beilstein J. Org. Chem. 2012; 8: 1241
- 43 Kamlar M, Císařová I, Hybelbauerová S, Veselý J. Eur. J. Org. Chem. 2017; 1926
- 44 Martzel T, Annibaletto J, Millet P, Pair E, Sanselme M, Oudeyer S, Levacher V, Brière J.-F. Chem. Eur. J. 2020; 26: 8541
- 45 Pair E, Cadart T, Levacher V, Brière J.-F. ChemCatChem 2016; 8: 1882
- 46a Seayad J, Patra PK, Zhang Y, Ying JY. Org. Lett. 2008; 10: 953
- 46b Nawaz F, Zaghouani M, Bonne D, Chuzel O, Rodriguez J, Coquerel Y. Eur. J. Org. Chem. 2013; 8253
- 47 Ji S.-P, Liu L.-W, Chen F, Ren H.-X, Yang Y, Zhang Z.-B, Peng L, Wang L.-X. Eur. J. Org. Chem. 2016; 5437
- 48a Shindo M, Itoh K, Ohtsuki K, Tsuchiya C, Shishido K. Synthesis 2003; 1441
- 48b Luisi R, Capriati V, Florio S, Vista T. J. Org. Chem. 2013; 68: 9861
- 49a Postikova S, Tite T, Levacher V, Brière J.-F. Adv. Synth. Catal. 2013; 355: 2513
- 49b Tite T, Sabbah M, Levacher V, Brière J.-F. Chem. Commun. 2013; 49: 11569
- 50 Cadart T, Berthonneau C, Levacher V, Perrio S, Brière J.-F. Chem. Eur. J. 2016; 22: 15261
- 51a Cadart T, Levacher V, Perrio S, Brière J.-F. Adv. Synth. Catal. 2018; 360: 1499
- 51b Capaccio V, Zielke K, Eitzinger A, Massa A, Palombi L, Faust K, Waser M. Org. Chem. Front. 2018; 5: 3336
- 51c Eitzinger A, Winter M, Schörgenhumer J, Waser M. Chem. Commun. 2020; 56: 579
- 52a Capaccio V, Sicignano M, Rodriguez RI, Della Sala G, Aleman J. Org. Lett. 2020; 22: 219
- 52b Eitzinger A, Brière J.-F, Cahard D, Waser M. Org. Biomol. Chem. 2020; 18: 405
- 53a Yu J.-S, Noda H, Shibasaki M. Angew. Chem. Int. Ed. 2018; 57: 818
- 53b De Oliveira MN, Arseniyadis S, Cossy J. Chem. Eur. J. 2018; 24: 4810
- 54a Yu J.-S, Noda H, Shibasaki M. Chem. Eur. J. 2018; 24: 15796
- 54b Amemiya F, Noda H, Shibasaki M. Chem. Pharm. Bull. 2019; 67: 1046
- 55a Yu J.-S, Espinosa M, Noda H, Shibasaki M. J. Am. Chem. Soc. 2019; 141: 10530
- 55b Espinosa M, Noda H, Shibasaki M. Org. Lett. 2019; 21: 9296
- 56 Seminal report about the use of such catalysts: Ooi T, Kameda M, Maruoka K. J. Am. Chem. Soc. 1999; 121: 6519
- 57a Shirakawa S, Maruoka K. Angew. Chem. Int. Ed. 2013; 52: 4312
- 57b Qia D, Sun J. Chem. Eur. J. 2019; 25: 3740
- 57c Nakamura T, Okuno K, Nishiyori R, Shirakawa S. Chem. Asian J. 2020; 15: 463
- 58a Bode JW. M, Fox RM, Baucom KD. Angew. Chem. Int. Ed. 2006; 45: 1248
- 58b Wucherpfennig TG, Pattabiraman VR, Limberg FR. P, Ruiz-Rodriguez J, Bode JW. Angew. Chem. Int. Ed. 2014; 53: 12248
- 59 Cui B.-D, Li S.-W, Zuo J, Wu Z.-J, Zhang X.-M, Yuan W.-C. Tetrahedron 2014; 70: 1895
- 60 Macchia A, Cuomo VD, Di Mola A, Pierri G, Tedesco C, Palombi L, Massa A. Eur. J. Org. Chem. 2020; 2264
- 61 Jurberg ID. Chem. Eur. J. 2017; 23: 9716
- 62 Parveen M, Aslam A, Ahmad A, Alam M, Silva MR, Silva PS. P. J. Mol. Struct. 2020; 1200: 127067
- 63 Martínez-Pardo P, Laviós A, Sanz-Marco A, Vila C, Pedro JR, Blay G. Adv. Synth. Catal. 2020; 362: 3564
- 64 Xiao W, Yang Q.-Q, Chen Z, Ouyang Q, Du W, Chen Y.-C. Org. Lett. 2018; 20: 236
- 65 Feng X, Zhou Z, Zhou R, Zhou Q.-Q, Dong L, Chen Y.-C. J. Am. Chem. Soc. 2012; 134: 19942
- 66 Ye Z, Bai L, Bai Y, Gan Z, Zhou H, Pan T, Yu Y, Zhou J. Tetrahedron 2019; 75: 682
- 67 Massa A, Roscigno A, De Caprariis P, Filosa R, Di Mola A. Adv. Synth. Catal. 2010; 352: 3348
- 68 More V, Di Mola A, Perillo M, De Caprariis P, Filosa R, Peduto A, Massa A. Synthesis 2011; 3027
- 69 Di Mola A, Di Martino M, Capaccio V, Pierri G, Palombi L, Tedesco C, Massa A. Eur. J. Org. Chem. 2018; 1699
- 70 Di Mola A, Macchia A, Tedesco C, Pierri G, Palombi L, Filosa R, Massa A. ChemistrySelect 2019; 4: 4820
See also:
See also, for antidiabetic agents:
For some illustrative overviews: