Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2021; 53(07): 1292-1300
DOI: 10.1055/s-0040-1706556
DOI: 10.1055/s-0040-1706556
paper
(E)-3-Arylidene-4-diazopyrrolidine-2,5-diones: Preparation and Use in RhII-Catalyzed X–H Insertion Reactions towards Novel, Medicinally Important Michael Acceptors
This research was supported by the Russian Foundation for Basic Research (project grant 19-33-60010).
Abstract
The use of readily available 1-aryl-3-arylidenepyrrolidine-2,5-diones in high yielding direct diazo-transfer reactions and subsequent involvement of the resulting diazo compounds in RhII-catalyzed O–H, S–H, and N–H insertion reactions delivered 4-substituted 1-aryl-3-arylidenepyrrolidine-2,5-diones of defined regiochemistry and geometrical configuration. These products are intended to be studied as Michael acceptors capable of inhibiting thioredoxin reductase, a promising cancer target.
Key words
Michael acceptors - pyrrolidine-2,5-diones - Wittig reaction - diazo transfer - rhodium(II) carbenes - X–H insertion - thioredoxin reductase inhibitorsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1706556.
- Supporting Information
Publication History
Received: 14 September 2020
Accepted after revision: 07 October 2020
Article published online:
05 November 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Baell JB, Nissink JW. M. ACS Chem. Biol. 2018; 13: 36
- 2a Jackson PA, Widen JC, Harki DA, Brummond KM. J. Med. Chem. 2017; 60: 839
- 2b Bauer RA. Drug Discovery Today 2015; 20: 1061
- 3 Baell JB, Walters MA. Nature 2014; 513: 481
- 4 Deng X, Kong L, Zhao Y, He J, Peng L.-Y, Li Y, Zhao Q.-S. Nat. Prod. Bioprospect. 2012; 2: 210
- 5 Selvaraju K, Mofers A, Pellegrini P, Solomonsson J, Ahlner A, Morad V, Hillert E.-K, Espinosa B, Arner ES. J, Jensen L, Molamstroem J, Turkina MV, D’Arcy P, Walters MA, Sunnerhagen M, Linder S. Sci. Rep. 2019; 9: 9841
- 6 Gan FF, Kaminska KK, Yang H, Liew C.-Y, Leow P.-C, So C.-L, Tu LN. L, Roy A, Yap C.-W, Kang T.-S, Chui W.-K, Chew E.-H. Antioxid. Redox Signaling 2013; 19: 1149
- 7a Jovanović M, Zhukovsky D, Podolski-Renić A, Domračeva I, Žalubovskis R, Senćanski M, Glišić S, Sharoyko V, Tennikova T, Dar’in D, Pešić M, Krasavin M. Eur. J. Med. Chem. 2019; 181: 111580
- 7b Jovanović M, Zhukovsky D, Podolski-Renić A, Žalubovskis R, Dar’in D, Sharoyko V, Tennikova T, Pešić M, Krasavin M. Eur. J. Med. Chem. 2020; 191: 112119
- 7c Bakulina O, Bannykh A, Jovanović M, Domračeva I, Podolski-Renić A, Žalubovskis R, Pešić M, Dar’in D, Krasavin M. J. Enzyme Inhib. Med. Chem. 2019; 34: 665
- 8 Kato MJ, Furlan M. Pure Appl. Chem. 2007; 79: 529
- 9 Inyutina A, Chupakhin E, Dar’in D, Krasavin M. Synlett 2020; 31: 1487
- 10 McGrath MA, Raines RT. Acc. Chem. Res. 2011; 44: 752
- 11 Luo K, Bao Y, Liu F, Xiao C, Li K, Zhang C, Huang R, Lin J, Zhang J, Jin Y. Eur. J. Med. Chem. 2019; 179: 805
- 12 Shalaby EM, Girgis AS, Farag H, Mabied AF, Fitch AN. RSC Adv. 2016; 6: 112950
- 13 Maga G, Falchi F, Radi M, Botta L, Casaluce G, Bernardini M, Irannejad H, Manetti F, Garbelli A, Samuele A, Zanoli S, Este JA, Gonzalez E, Zucca E, Paolucci S, Baldanti F, De Rijck J, Debyser Z, Botta M. ChemMedChem 2011; 6: 1371
- 14 Kalia D, Malekar PV, Pathasarathy M. Angew. Chem. Int. Ed. 2016; 55: 1432
- 15 Haval KP, Argade NP. J. Org. Chem. 2008; 73: 6936
- 16a Bubyrev A, Dar’in D, Kantin G, Krasavin M. Eur. J. Org. Chem. 2020; 4112
- 16b Dar’in D, Kantin G, Bakulina O, Krasavin M. Synthesis 2020; 52: 2259
- 16c Zhukovsky D, Dar’in D, Krasavin M. Eur. J. Org. Chem. 2020; 3013
- 17 Poschenrieder H, Stachel H.-D. J. Heterocycl. Chem. 1995; 32: 1457
- 18 Nakano Y, Hamaguchi M, Nagai T. J. Org. Chem. 1989; 54: 5912
- 19 Gillingham D, Fei N. Chem. Soc. Rev. 2013; 42: 4918
- 20 Laha D, Bhat R. Asian J. Org. Chem. 2020; 9: 918
- 21a Hedaya E, Theodoropulos S. Tetrahedron 1968; 24: 2241
- 21b Kim JH, Jung SH, Lee JH. Bull. Korean Chem. Soc. 2004; 25: 1088
- 21c Haval KP, Argade NP. Tetrahedron 2006; 62: 3557
- 22 Dar’in D, Kantin G, Krasavin M. Chem. Commun. 2019; 55: 5239
- 23 Shevalev RM, Zhmurov PA, Dar’in DV, Krasavin M. Mendeleev Commun. 2020; 30: 372
- 24 Benati L, Nanni D, Spagnolo P. J. Org. Chem. 1999; 64: 5132
- 25 Barkhatova D, Zhukovski D, Dar’in D, Krasavin M. Eur. J. Org. Chem. 2019; 5798
- 26 Xiao S.-J, Brunner S, Wieland M. J. Phys. Chem. B 2004; 108: 16508
- 27 Espino CG, Fiorih KW, Kim M, Du Bois J. J. Am. Chem. Soc. 2004; 126: 15378
- 28a Hansen JH, Davies HM. L. Chem. Sci. 2011; 2: 457
- 28b Yue Y, Wang Y, Hu W. Tetrahedron Lett. 2007; 48: 3975
- 28c Xu X, Zavalij PY, Doyle MP. Angew. Chem. Int. Ed. 2012; 51: 9829
- 28d Xu G, Liu K, Dai Z, Sun J. Org. Biomol. Chem. 2017; 15: 2345
- 29 Kaur A, Kaur M, Singh B. J. Heterocycl. Chem. 2015; 52: 827