Synlett 2020; 31(17): 1691-1695
DOI: 10.1055/s-0040-1706750
letter

Regio- and Stereoselectivity in the 1,3-Dipolar Cycloaddition Reactions of Isoquinolinium Ylides with Cyclopenta[a]acenaphthylen-8-ones

,
Parisa Ravaghi
,
Maryam Safaei
,
Jasmine Kayanian


Abstract

A convenient regio- and diastereoselective synthesis of functionalized 5a,5b-dihydro-5H,13H-naphtho[1′′,8′′:4′,5′,6′]pentaleno[1′:3,4]pyrrolo[2,1-a]isoquinolin-5-ones via 1,3-dipolar cycloaddition reaction of 8H-cyclopenta[a]acenaphthylen-8-ones with carbonyl-stabilized isoquinolinium N-ylides, is described. Based on DFT calculations at b3lyp/6-311+g(d,p) level of theory, a nonconcerted mechanism is proposed to explain the regioselectivity of this reaction. The structure of a typical product was confirmed by X-ray crystallographic analysis.

Supporting Information



Publication History

Received: 02 April 2020

Accepted after revision: 20 July 2020

Article published online:
11 August 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Chapman OL, McIntosh CL. J. Chem. Soc., Chem. Commun. 1971; 770
  • 2 Pal R, Mukherjee S, Chandrasekhar S, Guru RT. N. J. Phys. Chem. A 2014; 118: 3479
  • 3 Ogliaruso MA, Romanelli MG, Becker EI. Chem. Rev. 1965; 65: 261
  • 4 Potter RG, Hughes TS. J. Org. Chem. 2008; 73: 2995
  • 5 White DM. J. Org. Chem. 1974; 39: 1951
  • 6 Quintard A, Rodriguez J. Angew. Chem. Int. Ed. 2014; 53: 4044
  • 10 Typical Procedure for the Preparation of 8To a stirred mixture of N-substituted isoquinolinium salts 7 (1.0 mmol) and Et3N (1.1 mmol) in MeCN (6.0 mL) was added cyclopentadienone 4 (1 mmol),9a and the resulting mixture was stirred at 80 °C for 3 h. After completion of the reaction (TLC monitoring), the mixture was filtered, and the precipitate was washed with cold MeCN and n-hexane to afford the products 8aj.Dimethyl 4-Benzoyl-5-oxo-4H,12cH-naphtho-[1′′,8′′:4′,5′,6′]-pentaleno[1′:3,4]pyrrolo[2,1-a]isoquinoline-4a,6(5H)-dicarboxylate (8a)Orange crystals; yield 0.487 g (86%); mp 224–225 °C. IR (KBr): 3061, 2976, 1742, 1730, 1680, 1608, 1020 cm–1. 1H NMR: δ = 3.51 (s, 3 H), 3.86 (s, 3 H), 4.82 (d, J = 7.3 Hz, 1 H), 4.93 (s, 1 H), 5.26 (d, J = 7.3 Hz, 1 H), 6.07 (t, J = 7.3 Hz, 1 H), 6.13 (s, 1 H), 6.37 (d, J = 7.5 Hz, 1 H), 6.75 (d, J = 7.3 Hz, 1 H), 6.83 (t, J = 7.3 Hz, 1 H), 7.50 (t, J = 7.0 Hz, 1 H), 7.56 (t, J = 7.0 Hz, 1 H), 7.62 (d, J = 7.0 Hz, 2 H), 7.78 (d, J = 7.0 Hz, 1 H), 7.84 (t, J = 8.0 Hz, 1 H), 8.00 (t, J = 8.0 Hz, 2 H), 8.15 (d, J = 8.0 Hz, 2 H), 8.27 (d, J = 7.0 Hz, 1 H). 13C NMR: δ = 52.0 (MeO), 52.6 (MeO), 71.7 (CH), 73.1 (C), 73.7 (CH), 75.0 (C), 103.0 (CH), 121.7 (CH), 123.4 (C) 124.3 (CH), 124.5 (2 CH), 124.8 (C), 125.7 (CH), 126.1 (CH), 127.9 (CH), 128.2 (CH), 128.8 (2 CH), 129.0 (CH), 129.1 (CH), 129.2 (CH), 130.6 (C), 130.7 (C), 131.0 (CH), 132.2 (C), 133.8 (CH), 135.3 (C), 135.4 (CH), 139.1 (C), 141.9 (C), 161.5 (C = O), 165.7 (C = O), 190.0 (C), 193.7 (C = O), 198.2 (C = O). MS (EI, 70 eV): m/z (%) = 567 (4) [M+], 437 (50), 338 (31), 301 (54), 279 (36), 244 (45), 203 (18), 187 (27), 105 (100). Anal. Calcd for C36H25NO6 (567.60): C, 76.18; H, 4.44; N, 2.47. Found: C, 75.88; H, 4.46; N, 2.46.
  • 11 X-ray Crystal-Structure Determination of 8eCCDC 1969492 contains the supplementary crystallographic data for this paper (structure 8e). The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
    • 12a CalculationsAll calculations in this paper were carried out with Gaussian 09 package12a by using the DFT method. Through the comparison of theoretical and experimental data, obtained from X-ray crystallography, we found that b3lyp/6-311+g(d,p)12b,c results were in best agreement with the experimental data. These comparisons were based on bond lengths, bond angles, and dihedral angles. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam J, Klene MM, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian 09, Revision A.02. 2016
    • 12b Johnson BG, Fisch MJ. J. Chem. Phys. 1994; 100: 7429
    • 12c Gauss J. J. Chem. Phys. 1993; 99: 3629
  • 15 Vektariene A, Vektaris G, Svoboda J. ARKIVOC 2009; (vii): 311
  • 16 Parr RG, Pearson RG. J. Am. Chem. Soc. 1983; 105: 7512
  • 17 Parr RG, Szentpaly L, Liu SB. J. Am. Chem. Soc. 1999; 121: 1922