Subscribe to RSS
DOI: 10.1055/s-0040-1707159
Cycloadditions of Alkenylboronic Derivatives
The work was funded by Enamine Ldt. and Ministry of Education and Science of Ukraine (Grant No. 19BF037-03).Publication History
Received: 25 March 2020
Accepted after revision: 22 May 2020
Publication Date:
24 June 2020 (online)
Abstract
The literature on cycloaddition reactions of boron-containing alkenes is surveyed with 132 references. The data are categorized according to the reaction type ([2+1], [2+2], [3+2], [4+2], and [4+3] cycloadditions). The cyclopropanation and the Diels–Alder reactions of alkenylboronic derivatives have been studied more or less comprehensively, and for some substrates, they can be considered as convenient methods for the rapid regio- and stereoselective construction of even complex cyclic systems. Other types of the cycloadditions, as well as mechanistic aspects of the processes, have been addressed less thoroughly in the previous works.
1 Introduction
2 [2+1] Cycloaddition
2.1 Cyclopropanation
2.1.1 With Methylene Synthetic Equivalents
2.1.2 With Substituted Carbenoids
2.2 Epoxidation
2.3 Aziridination
3 [2+2] Cycloaddition
4 [3+2] Cycloaddition
4.1 With Nitrile Oxides
4.2 With Diazoalkanes
4.3 With Nitrones
4.4 With Azomethine Ylides
5 [4+2] Cycloaddition
6 [4+3] Cycloaddition
7 Conclusions and Outlook
-
References
- 1 Brown HC. Organic Syntheses via Boranes. Wiley; 1975
- 2 Morrison JD, Scott JW. Asymmetric Synthesis . Academic Press; New York: 1983
- 3 Hall DG. Boronic Acids: Preparation, Applications in Organic Synthesis and Medicine. Hall DG. Wiley; New York: 2006
- 4 Carreras J, Caballero A, Pérez PJ. Chem. Asian J. 2019; 14: 329
- 5 Munir I, Zahoor AF, Rasool N, Naqvi SA. R, Zia KM, Ahmad R. Mol. Divers. 2019; 23: 215
- 6 Matsui JK, Lang SB, Heitz DR, Molander GA. ACS Catal. 2017; 7: 2563
- 7 António JP. M, Russo R, Carvalho CP, Cal PM. S. D, Gois PM. P. Chem. Soc. Rev. 2019; 48: 3513
- 8 Heravi M, Malmir M, Moradi R. Curr. Org. Chem. 2020; 23: 2469
- 9 Friese FW, Studer A. Chem. Sci. 2019; 10: 8503
- 10 Tan J, Yudin AK. Drug Discov. Today Technol. 2018; 29: 51
- 11 Fernandes GF. S, Denny WA, Dos Santos JL. Eur. J. Med. Chem. 2019; 179: 791
- 12 Yang F, Zhu M, Zhang J, Zhou H. MedChemComm 2018; 9: 201
- 13 Leśnikowski ZJ. Expert Opin. Drug Discov. 2016; 11: 569
- 14 Nishiwaki N. Methods and Applications of Cycloaddition Reactions in Organic Syntheses. Nishiwaki N. Wiley; Hoboken: 2014
- 15 Hilt G, Bolze P. Synthesis 2005; 2091
- 16 Welker ME. Tetrahedron 2008; 64: 11529
- 17 Eberlin L, Tripoteau F, Carreaux F, Whiting A, Carboni B. Beilstein J. Org. Chem. 2014; 10: 237
- 18 Pyziak J, Walkowiak J, Marciniec B. Chem. Eur. J. 2017; 23: 3502
- 19 Mantel M, Brauns M, Pietruszka J. Boron-Containing Chiral Auxiliaries. Heidelberg. In: Topics in Heterocyclic Chemistry. Springer Berlin; Heidelberg: 2017: 1-44
- 20 Grygorenko OO, Hryshchuk OV. Chem. Heterocycl. Compd. 2020; 56: 39
- 21 Ebner C, Carreira EM. Chem. Rev. 2017; 117: 11651
- 22 Fontani P, Carboni B, Vaultier M, Carrié R. Tetrahedron Lett. 1989; 30: 4815
- 23 Charette AB, De Freitas-Gil RP. Tetrahedron Lett. 1997; 38: 2809
- 24 Hildebrand JP, Marsden SP. Synlett 1996; 893
- 25 Fang GH, Yan ZJ, Deng MZ. Org. Lett. 2004; 6: 357
- 26 Finn KJ, Rochon L, Hudlicky T. Tetrahedron: Asymmetry 2005; 16: 3606
- 27 Wang X.-Z, Deng M.-Z. J. Chem. Soc., Perkin Trans. 1 1996; 2663
- 28 Fontani P, Carboni B, Vaultier M, Maas G. Synthesis 1991; 605
- 29 Koolman HF, Kantor S, Bogdan AR, Wang Y, Pan JY, Djuric SW. Org. Biomol. Chem. 2016; 14: 6591
- 30 Huang Y, Chen D, Qing FL. Tetrahedron 2003; 59: 7879
- 31 Markό IE, Giard T, Sumida S, Gies AE. Tetrahedron Lett. 2002; 43: 2317
- 32 Pietruszka J, Widenmeyer M. Synlett 1997; 977
- 33 Luithle JE. A, Pietruszka J, Witt A. Chem. Commun. 1998; 2651
- 34 Luithle JE. A, Pietruszka J. J. Org. Chem. 1999; 64: 8287
- 35 Luithle JE. A, Pietruszka J. Eur. J. Org. Chem. 2000; 2557
- 36 Hohn E, Pietruszka J. Adv. Synth. Catal. 2004; 346: 863
- 37 Pietruszka J, Solduga G. Eur. J. Org. Chem. 2009; 5998
- 38 Pietruszka J, Witt A. J. Chem. Soc., Perkin Trans. 1 2000; 4293
- 39 Hohn E, Pietruszka J, Solduga G. Synlett 2006; 1531
- 40 Pietruszka J, Witt A. Synlett 2003; 91
- 41 Luithle JE. A, Pietruszka J. J. Org. Chem. 2000; 65: 9194
- 42 Ty N, Pontikis R, Chabot GG, Devillers E, Quentin L, Bourg S, Florent JC. Bioorg. Med. Chem. 2013; 21: 1357
- 43 Annette Berg C, Eichenauer NC, Pietruszka J. Pure Appl. Chem. 2012; 84: 2339
- 44 Imai T, Mineta H, Nishida S. J. Org. Chem. 1990; 4986
- 45 Zhou SM, Deng MZ, Xia LJ, Tang MH. Angew. Chem. Int. Ed. 1998; 37: 2845
- 46 Lin H, Tian L, Krauss IJ. J. Am. Chem. Soc. 2015; 137: 13176
- 47 Murray SA, Luc EC. M, Meek SJ. Org. Lett. 2018; 20: 469
- 48 Hussain MM, Li H, Hussain N, Urena M, Carroll PJ, Walsh PJ. J. Am. Chem. Soc. 2009; 131: 6516
- 49 Markó IE, Kumamoto T, Giard T. Adv. Synth. Catal. 2002; 344: 1063
- 50 Garcia PG, Hohn E, Pietruszka J. J. Organomet. Chem. 2003; 680: 281
- 51 Carreras J, Caballero A, Pérez PJ. Angew. Chem. Int. Ed. 2018; 57: 2334
- 52 Duncton MA. J, Ayala L, Kaub C, Janagani S, Edwards WT, Orike N, Ramamoorthy K, Kincaid J, Kelly MG. Tetrahedron Lett. 2010; 51: 1009
- 53 Duncton MA. J, Singh R. Org. Lett. 2013; 15: 10
- 54 Hryschuk OV, Yurov Y, Tymtsunik AV, Kovtunenko VO, Komarov IV, Grygorenko OO. Adv. Synth. Catal. 2019; 361: 5428
- 55 Fujioka Y, Amii H. Org. Lett. 2008; 10: 769
- 56 Oshiro K, Morimoto Y, Amii H. Synthesis 2010; 2080
- 57 Gill D, McLay N, Waring M, Wilkinson C, Sweeney J. Synlett 2014; 25: 1756
- 58 Hryshchuk OV, Varenyk AO, Yurov Y, Kuchkovska YO, Tymtsunik AV, Grygorenko OO. Eur. J. Org. Chem. 2020; 2217
- 59 Woods WG, Bengelsdorf IS. J. Org. Chem. 1966; 31: 2769
- 60 Molander GA, Ribagorda M. J. Am. Chem. Soc. 2003; 125: 11148
- 61 Uno BE, Gillis EP, Burke MD. Tetrahedron 2009; 65: 3130
- 62 Lee CF, Diaz DB, Holownia A, Kaldas SJ, Liew SK, Garrett GE, Dudding T, Yudin AK. Nat. Chem. 2018; 10: 1062
- 63 Ivon YM, Voitenko ZV, Grygorenko OO. Synthesis 2018; 50: 1857
- 64 He Z, Yudin AK. J. Am. Chem. Soc. 2011; 133: 13770
- 65 Zeng YF, Ji WW, Lv WX, Chen Y, Tan DH, Li Q, Wang H. Angew. Chem. Int. Ed. 2017; 56: 14707
- 66 Tan DH, Cai YH, Zeng YF, Lv WX, Yang L, Li Q, Wang H. Angew. Chem. Int. Ed. 2019; 58: 13784
- 67 Kabytaev KZ, Safronov AV, Jalisatgi SS, Hawthorne MF. J. Organomet. Chem. 2014; 749: 106
- 68 Brauer DJ, Pawelke G. J. Organomet. Chem. 2000; 604: 43
- 69 Fernández E, Frey W, Pietruszka J. Synlett 2010; 1386
- 70 Li J, Burke MD. J. Am. Chem. Soc. 2011; 133: 13774
- 71 Hussain MM, Hernández Toribio J, Carroll PJ, Walsh PJ. Angew. Chem. Int. Ed. 2011; 50: 6337
- 72 Hussain N, Hussain MM, Carroll PJ, Walsh P. J. Chem. Sci. 2013; 4: 3946
- 73 Hernández-Toribio J, Hussain MM, Cheng K, Carroll PJ, Walsh PJ. Org. Lett. 2011; 13: 6094
- 74 Fish RH. J. Org. Chem. 1969; 34: 1127
- 75 Hollis WG, Lappenbusch WC, Everberg KA, Woleben CM. Tetrahedron Lett. 1993; 34: 7517
- 76 Conner ML, Brown MK. J. Org. Chem. 2016; 81: 8050
- 77 Demchuk, O. P.; Hryshchuk, O. V.; Vashchenko, B. V.; Kozytskiy, A. V.; Tymtsunik, A. V.; Komarov, I. V.; Grygorenko, O. O.; J. Org. Chem. 2020, 85, 5927.
- 78 Coote SC, Bach T. J. Am. Chem. Soc. 2013; 135: 14948
- 79 D’Auria M. Photochem. Photobiol. Sci. 2019; 18: 2297
- 80 D’Annibale A, D’Auria M, Prati F, Romagnoli C, Stoia S, Racioppi R, Viggiani L. Tetrahedron 2013; 69: 3782
- 81 Bianchi G, Augusto C, Grünanger P. J. Organomet. Chem. 1966; 6: 598
- 82 Wallace RH, Zong KK. Tetrahedron Lett. 1992; 33: 6941
- 83 Wallace RH, Liu J. Tetrahedron Lett. 1994; 35: 7493
- 84 Baba S, Carboni B. J. Organomet. Chem. 1995; 498: 229
- 85 Jeong J, Zong K, Choe JC. J. Heterocycl. Chem. 2017; 54: 1007
- 86 Wallace RH, Liu J, Zong KK, Eddings A. Tetrahedron Lett. 1997; 38: 6791
- 87 Liu J, Eddings A, Wallace RH. Tetrahedron Lett. 1997; 38: 6795
- 88 Wallace RH, Zong KK. J. Organomet. Chem. 1999; 581: 87
- 89 Zhang A, Kan Y, Zhao GL, Jiang B. Tetrahedron 2000; 56: 965
- 90 Davies CD, Marsden SP, Stokes ES. E. Tetrahedron Lett. 1998; 39: 8513
- 91 Matteson DS. J. Org. Chem. 1962; 27: 4293
- 92 Jazouli M, Carboni B, Carrie R. Heteroat. Chem. 1994; 5: 513
- 93 Carboni B, Ollivault M, Le Bouguenec F, Carrié R, Jazouli M. Tetrahedron Lett. 1997; 38: 6665
- 94 Davies CD, Marsden SP, Stokes ES. Tetrahedron Lett. 2000; 41: 4229
- 95 Belfaitah A, Isly M, Carboni B. Tetrahedron Lett. 2004; 45: 1969
- 96 López-Pérez A, Segler M, Adrio J, Carretero JC. J. Org. Chem. 2011; 76: 1945
- 97 Matteson DS, Waldbillig JO. J. Org. Chem. 1963; 28: 366
- 98 Singleton DA, Martinez JP. J. Am. Chem. Soc. 1990; 112: 7423
- 99 Singleton DA, Martinez JP, Ndip GM. J. Org. Chem. 1992; 57: 5768
- 100 Singleton DA, Martinez JP, Watson JV, Ndip GM. Tetrahedron 1992; 48: 5831
- 101 Singleton DA, Martinez JP, Watson JV. Tetrahedron Lett. 1992; 33: 1017
- 102 Pellegrinet SC, Silva MA, Goodman JM. J. Am. Chem. Soc. 2001; 123: 8832
- 103 Pellegrinet SC, Silva MA, Goodman JM. J. Comput. Aided Mol. Des. 2004; 18: 209
- 104 Silva MA, Pellegrinet SC, Goodman JM. ARKIVOC 2003; (x): 556
- 105 Singleton DA, Kim K, Martinez JP. Tetrahedron Lett. 1993; 34: 3071
- 106 Jego J.-M, Carboni B, Youssofi A, Vaultier M. Synlett 1993; 595
- 107 Noiret N, Youssofi A, Carboni B, Vaultier M. J. Chem. Soc., Chem. Commun. 1992; 1105
- 108 Lee Y.-K, Singleton DA. J. Org. Chem. 1997; 62: 2255
- 109 Martinez-Fresneda P, Vaultier M. Tetrahedron Lett. 1989; 30: 2929
- 110 Rasset C, Vaultier M. Tetrahedron 1994; 50: 3397
- 111 Lorvelec G, Vaultier M. Tetrahedron Lett. 1998; 39: 5185
- 112 Singleton DA, Lee YK. Tetrahedron Lett. 1995; 36: 3473
- 113 Vallejos MM, Grimblat N, Pellegrinet SC. RSC Adv. 2014; 4: 36385
- 114 Sarotti AM, Pisano PL, Pellegrinet SC. Org. Biomol. Chem. 2010; 8: 5069
- 115 Lv WX, Li Z, Lin E, Li JL, Tan DH, Cai YH, Li Q, Wang H. Chem. Eur. J. 2019; 25: 4058
- 116 Cho HK, Lim HY, Cho CG. Org. Lett. 2013; 15: 5806
- 117 Shin HS, Jung YG, Cho HK, Park YG, Cho CG. Org. Lett. 2014; 16: 5718
- 118 Yoshida H, Mukae M, Ohshita J. Chem. Commun. 2010; 46: 5253
- 119 Yoshida H, Yoshida R, Mukae M, Ohshita J, Takaki K. Chem. Lett. 2011; 40: 1272
- 120 Cain DL, McLaughlin C, Molloy JJ, Carpenter-Warren C, Anderson NA, Watson AJ. B. Synlett 2019; 30: 787
- 121 Feng C, Wang H, Xu L, Li P. Org. Biomol. Chem. 2015; 13: 7136
- 122 Batey RA, Thadani AN, Lough AJ. Chem. Commun. 1999; 475
- 123 Batey RA, Thadani AN, Lough AJ. J. Am. Chem. Soc. 1998; 121: 450
- 124 Nagao K, Yamazaki A, Ohmiya H, Sawamura M. Org. Lett. 2018; 20: 1861
- 125 Mukherjee S, Corey EJ. Org. Lett. 2010; 12: 1024
- 126 Mahender Reddy K, Bhimireddy E, Thirupathi B, Breitler S, Yu S, Corey EJ. J. Am. Chem. Soc. 2016; 138: 2443
- 127 Thirupathi B, Breitler S, Mahender Reddy K, Corey EJ. J. Am. Chem. Soc. 2016; 138: 10842
- 128 Mahender Reddy K, Thirupathi B, Corey EJ. Org. Lett. 2017; 19: 4956
- 129 Anumandla D, Littlefield R, Jeffrey CS. Org. Lett. 2014; 16: 5112
- 130 Molander GA, Sandrock DL. Curr. Opin. Drug Discov. Devel. 2009; 12: 811
- 131 Amani J, Alam R, Badir S, Molander GA. Org. Lett. 2017; 19: 2426
- 132 Primer DN, Karakaya I, Tellis JC, Molander GA. J. Am. Chem. Soc. 2015; 137: 2195