Subscribe to RSS
DOI: 10.1055/s-0040-1707253
Recent Developments on Denitrogenative Functionalization of Benzotriazoles
G.Y. sincerely thanks the National Natural Science Foundation of China (Grant No. 21572094) and the Natural Science Foundation of Zhejiang Province (Grant No. LY18B020005) for financial support. V.K.T. gratefully acknowledges the Science Engineering and Research Board (SERB), New Delhi (Grant No. EMR/2016/001123) for the funding.
This manuscript is dedicated to the memory of the late Prof. Rolf Huisgen for his notable contributions on triazole chemistry.
Abstract
Benzotriazoles are employed as useful synthons in organic synthesis, and due to their unique structural motif, they are able to undergo denitrogenation during the construction of new bonds. Various methods for the functionalization of benzotriazoles as precursors of ortho-amino arenediazoniums have recently been developed that involve transition-metal-catalyzed coupling reactions, mainly via cyclization, borylation, alkenylation, alkylation, carbonylation and the formation of carbon–heteroatom bonds. In this short review, we primarily focus on the recent applications of benzotriazoles in organic chemistry that proceed via a denitrogenative process, and the mechanisms are also discussed.
1 Introduction
2 Common Synthetic Routes Allowing Easy Access to Benzotriazole Derivatives
3 Formation of C–C Bonds
3.1 Cyclization Reactions
3.2 Arylation, Alkenylation, Alkylation and Carbonylation Reactions
4 Carbon–Heteroatom Bond Formation
5 Miscellaneous Denitrogenative Functionalization
6 Conclusions and Future Perspectives
Key words
benzotriazoles - BtRC - ring cleavage - coupling reactions - denitrogenative functionalizationPublication History
Received: 23 June 2020
Accepted after revision: 13 July 2020
Article published online:
01 September 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Kolb HC, Finn M, Sharpless KB. Angew. Chem. Int. Ed. 2001; 40: 2004
- 1b Yogeeswari P, Sriram D, Ramamoorthy L, Sunil JJ, Satish KS, Stables JP. Eur. J. Med. Chem. 2002; 37: 231
- 1c Norris P. Curr. Top. Med. Chem. 2008; 8: 101
- 1d De S K, Stebbins JL, Chen L.-H, Riel-Mehan M, Machleidt T, Dahl R, Yuan H, Emdadi A, Barile E, Chen V. J. Med. Chem. 2009; 52: 1943
- 1e Massari S, Daelemans D, Barreca ML, Knezevich A, Sabatini S, Cecchetti V, Marcello A, Pannecouque C, Tabarrini O. J. Med. Chem. 2010; 53: 641
- 1f Mishra BB, Tiwari VK. Eur. J. Med. Chem. 2011; 46: 4769
- 2a Tornøe CW, Christensen C, Meldal M. J. Org. Chem. 2002; 67: 3057
- 2b Angelo NG, Arora PS. J. Am. Chem. Soc. 2005; 127: 17134
- 2c Oh K, Guan Z. Chem. Commun. 2006; 3069
- 2d Caleta I, Kralj M, Marjanovic M, Bertosa B, Tomic S, Pavlovic G, Zamola GK. J. Med. Chem. 2009; 52: 1744
- 2e Pedersen DS, Abell A. Eur. J. Org. Chem. 2011; 2399
- 2f Tiwari VK, Mishra BB, Mishra KB, Mishra N, Singh AS, Chen X. Chem. Rev. 2016; 116: 3086
- 3a Chattopadhyay B, Gevorgyan V. Angew. Chem. Int. Ed. 2012; 51: 862
- 3b Gulevich AV, Gevorgyan V. Angew. Chem. Int. Ed. 2013; 52: 1371
- 3c Miura T, Tanaka T, Biyajima T, Yada A, Murakami M. Angew. Chem. Int. Ed. 2013; 52: 3883
- 3d Parr BT, Green SA, Davies HM. J. J. Am. Chem. Soc. 2013; 135: 4716
- 3e Chuprakov S, Worrell BT, Selander N, Sit RK, Fokin VV. J. Am. Chem. Soc. 2014; 136: 195
- 3f Yang J, Zhu C, Tang X, Shi M. Angew. Chem. Int. Ed. 2014; 53: 5142
- 3g Davies HM. L, Alford JS. Chem. Soc. Rev. 2014; 43: 5151
- 3h Schultz EE, Lindsay VN. G, Sarpong R. Angew. Chem. Int. Ed. 2014; 53: 9904
- 3i Ryu T, Baek Y, Lee PH. J. Org. Chem. 2015; 80: 2376
- 3j Lei X, Gao M, Tang Y. Org. Lett. 2016; 18: 4990
- 3k Li Y, Zhang R, Ali A, Zhang J, Bi X, Fu J. Org. Lett. 2017; 19: 3087
- 3l Song W, Zheng N, Li M, Dong K, Li J, Ullah K, Zheng Y. Org. Lett. 2018; 20: 6705
- 3m Sontakke GS, Pal K, Volla CM. R. J. Org. Chem. 2019; 84: 12198
- 3n Pal K, Sontakke GS, Volla CM. R. Org. Lett. 2019; 21: 371
- 3o Liu Y, Xie P, Li J, Bai W.-J, Jiang J. Org. Lett. 2019; 21: 4944
- 3p Jiang Y, Sun R, Tang X.-Y, Shi M. Chem. Eur. J. 2016; 22: 17910
- 3q Li Y, Yang HJ, Zhai HB. Chem. Eur. J. 2018; 24: 12757
- 4a Katritzky AR, Ji FB, Fan WQ, Gallos JK, Greenhill JV, King RW, Steel PJ. J. Org. Chem. 1992; 57: 190
- 4b Katritzky AR, Yang B, Dalal NS. J. Org. Chem. 1998; 63: 1467
- 4c Katritzky AR, Lan X, Yang J, Denisko O. Chem. Rev. 1998; 98: 409
- 4d Katritzky AR, Du W, Matskawa Y, Ghiviriga I, Denisenko SN. J. Heterocycl. Chem. 1999; 36: 927
- 4e Micó XI, Ziegler T, Subramanian LR. Angew. Chem. Int. Ed. 2004; 43: 1400
- 4f Katritzky AR, Khelashvili L, Le KN. B, Mohapatra PP, Steel PJ. J. Org. Chem. 2007; 72: 5805
- 4g Uhde M, Anwar MU, Ziegler T. Synth. Commun. 2008; 38: 881
- 4h Kim T, Kim K. Tetrahedron Lett. 2010; 51: 868
- 4i Kumar D, Mishra BB, Kale RR, Mishra KB, Tiwari VK. J. Org. Biomol. Chem. 2013; 1: 169
- 4j Katritzky AR, Rachwal S. Chem. Rev. 2011; 111: 7063
- 5a Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
- 5b Sun C.-L, Li B.-J, Shi Z.-J. Chem. Rev. 2011; 111: 1293
- 5c Hartwig JF. Acc. Chem. Res. 2012; 45: 864
- 5d Mo F, Dong G, Zhang Y, Wang J. Org. Biomol. Chem. 2013; 11: 1582
- 5e Xiao Q, Zhang Y, Wang J. Acc. Chem. Res. 2013; 46: 236
- 5f Zhang F, Spring DR. Chem. Soc. Rev. 2014; 43: 6906
- 5g Cherney AH, Kadunce NT, Reisman SE. Chem. Rev. 2015; 115: 9587
- 5h Ruiz-Castillo P, Buchwald SL. Chem. Rev. 2016; 116: 12564
- 5i Yan G, Zhang Y, Wang J. Adv. Synth. Catal. 2017; 359: 4068
- 5j Xia Y, Qiu D, Wang J. Chem. Rev. 2017; 117: 13810
- 5k Mo F, Qiu D, Zhang Y, Wang J. Acc. Chem. Res. 2018; 51: 496
- 5l Korch KM, Watson DA. Chem. Rev. 2019; 119: 8192
- 6 Nakamura I, Nemoto T, Shiraiwa N, Terada M. Org. Lett. 2009; 11: 1055
- 7 Teders M, Pitzer L, Buss S, Glorius F. ACS Catal. 2017; 7: 4053
- 8 Wang Y, Wang Z, Chen X, Tang Y. Org. Chem. Front. 2018; 5: 2815
- 9 Wang YH, Li YH, Fan YJ, Wang ZG, Tang YF. Chem. Commun. 2017; 53: 11873
- 10 Zhang P.-C, Han J, Zhang J. Angew. Chem. Int. Ed. 2019; 58: 11444
- 11 Yin ZP, Wang ZC, Wu XF. Org. Lett. 2017; 19: 6232
- 12 Battula S, Kumar A, Gupta AP, Ahmed QN. Org. Lett. 2015; 17: 5562
- 13 Su Y, Petersen JL, Gregg TL, Shi X. Org. Lett. 2015; 17: 120
- 14 Kumar D, Mishra A, Mishra BB, Bhattacharya S, Tiwari VK. J. Org. Chem. 2013; 78: 899
- 15 Kumar D, Mishra BB, Tiwari VK. J. Org. Chem. 2014; 79: 251
- 16 Yadav MS, Singh AS, Agrahari AK, Mishra N, Tiwari VK. ACS Omega 2019; 4: 6681
- 17 Singh AS, Mishra N, Yadav MS, Tiwari VK. J. Heterocycl. Chem. 2019; 56: 275
- 18 Singh AS, Mishra N, Kumar D, Tiwari VK. ACS Omega 2017; 2: 5044
- 19 Kumar D, Singh AS, Tiwari VK. RSC Adv. 2015; 5: 31584
- 20 Singh AS, Kumar D, Mishra N, Tiwari VK. ChemistrySelect 2017; 2: 224
- 21 Singh M, Singh AS, Bose P, Tiwari VK. Tetrahedron 2020; 76: 131078
- 22 Wang YH, Wu YF, Li YH, Tang YF. Chem. Sci. 2017; 8: 3852
- 23 Hopkinson MN, Gómez-Suárez A, Teders M, Sahoo B, Glorius F. Angew. Chem. Int. Ed. 2016; 55: 4361
- 24 Wang Y, Wang Z, Tang Y. Chem. Rec. 2020; 20: 693
- 25 Teders M, Gómez-Suárez A, Pitzer L, Hopkinson MN, Glorius F. Angew. Chem. Int. Ed. 2017; 56: 902
- 26 Jian Y, Chen M, Huang B, Jia W, Yang C, Xia W. Org. Lett. 2018; 20: 5370
- 27a Kale RR, Prasad V, Hussain HA, Tiwari VK. Tetrahedron Lett. 2010; 51: 5740
- 27b Mukhopadhyay C, Tapaswi PK, Butcher RJ. Org. Biomol. Chem. 2010; 8: 4720
- 27c Zhou J, He J, Wang B, Yang W, Ren H. J. Am. Chem. Soc. 2011; 133: 6868
- 27d Kiran Kumar R, Ali MA, Punniyamurthy T. Org. Lett. 2011; 13: 2102
- 27e Zhu Z, Liu QL, Li W, Zhu YM. Heterocycles 2011; 83: 2057
- 27f Lukasik E, Wrobel Z. Synlett 2014; 25: 1987
- 27g Shi F, Waldo JP, Chen Y, Larock RC. Org. Lett. 2008; 10: 2409
- 27h Chandrasekhar S, Seenaiah M, Rao CL, Reddy CR. Tetrahedron 2008; 64: 11325
- 27i Zhang F, Moses JE. Org. Lett. 2009; 11: 1587
- 27j Ramachary DB, Shashank AB. Chem. Eur. J. 2013; 19: 13175
- 27k Chen ZY, Wu MJ. Org. Lett. 2005; 7: 475
- 27l Mandadapu AK, Sharma SK, Gupta S, Krishna DG. V, Kundu B. Org. Lett. 2011; 13: 3162
- 27m Ueda S, Su M, Buchwald SL. Angew. Chem. Int. Ed. 2011; 50: 8944
- 27n Liu Y, Yan W, Chen Y, Petersen JL, Shi X. Org. Lett. 2008; 10: 5389
- 27o Antilla JC, Baskin JM, Barder TE, Buchwald SL. J. Org. Chem. 2004; 69: 5578
- 27p Kang SK, Lee SH, Lee D. Synlett 2000; 1022
- 28a Katritzky AR, Suzuki K, Singh SK, He HY. J. Org. Chem. 2003; 68: 5720
- 28b Singh AS, Agrahari AK, Singh M, Mishra N, Tiwari VK. ARKIVOC 2017; (v): 80
- 28c Katritzky AR, Zhang Y, Singh SK. Synthesis 2003; 2795
- 28d Duangkamol C, Wangngae S, Pattarawarapan M, Phakhodee W. Eur. J. Org. Chem. 2014; 32: 7109
- 28e Katritzky AR, He H.-Y, Suzuki K. J. Org. Chem. 2000; 65: 8210
- 28f Agha KA, Abo-Dya NE, Ibrahim TS, Abdel-Aal EH. ARKIVOC 2016; (iii): : 161
- 28g Wet-Osot S, Duangkamol C, Pattarawarapan M, Phakhodee W. Monatsh. Chem. 2015; 146: 959
- 28h Wet-Osot S, Duangkamol C, Pattarawarapan M. Tetrahedron Lett. 2015; 56: 6998
- 28i Singh M, Singh AS, Mishra N, Agrahari AK, Tiwari VK. Synthesis 2019; 51: 2183
- 28j Laconde G, Amblard M, Martinez J. Tetrahedron Lett. 2019; 60: 341
- 28k Singh AS, Agrahari AK, Singh SK, Yadav MS, Tiwari VK. Synthesis 2019; 51: 3443
- 29a Katritzky AR. Chem. Rev. 2004; 104: 2125
- 29b Saracoglu N. Top. Heterocycl. Chem. 2007; 11: 145
- 29c Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
- 29d Pennington LD, Moustakas DT. J. Med. Chem. 2017; 60: 3552
- 29e Jarhad DB, Mashelkar KK, Kim H.-R, Noh M, Jeong LS. J. Med. Chem. 2018; 61: 9791
- 29f Garces AE, Stocks MJ. J. Med. Chem. 2019; 62: 4815
- 30a Wang S, Xi C. Chem. Soc. Rev. 2019; 48: 382
- 30b Bariwal J, Voskressensky LG, Van der Eycken EV. Chem. Soc. Rev. 2018; 47: 3831
- 30c Lu L.-Q, Li T.-R, Wang Q, Xiao W.-J. Chem. Soc. Rev. 2017; 46: 4135
- 30d Xuan J, Studer A. Chem. Soc. Rev. 2017; 46: 4329
- 30e Xia Y, Wang J. Chem. Soc. Rev. 2017; 46: 2306
- 30f Chen J.-R, Hu X.-Q, Lu L.-Q, Xiao W.-J. Chem. Rev. 2015; 115: 5301
- 30g Guo X.-X, Gu D.-W, Wu Z, Zhang W. Chem. Rev. 2015; 115: 1622
- 31a Burgess EM, Carithers R, McCullagh L. J. Am. Chem. Soc. 1968; 90: 1923
- 31b Alimi I, Remy R, Bochet CG. Eur. J. Org. Chem. 2017; 3197
- 32a Alberico D, Scott ME, Lautens K. Chem. Rev. 2007; 107: 174
- 32b Daugulis O, Do H.-Q, Shabashov D. Acc. Chem. Res. 2009; 42: 1074
- 32c Studer A, Curran DP. Angew. Chem. Int. Ed. 2011; 50: 5018
- 32d Hari DP, König B. Angew. Chem. Int. Ed. 2013; 52: 4734
- 32e Yan G, Borah AJ, Yang M. Adv. Synth. Catal. 2014; 356: 2375
- 33 Boronic Acids: Preparation and Applications in Organic Synthesis and Medicine. Hall DG. Wiley-VCH; Weinheim: 2005
- 34 Miyaura N. Top. Curr. Chem. 2002; 219: 11
- 35a Dhakshinamoorthy A, Asiri AM, Garcia H. Chem. Soc. Rev. 2015; 44: 1922
- 35b Zhu X, Chiba S. Chem. Soc. Rev. 2016; 45: 4504
- 35c Fu J, Zanoni G, Anderson EA, Bi X. Chem. Soc. Rev. 2017; 46: 7208
- 35d Takise R, Muto K, Yamaguchi J. Chem. Soc. Rev. 2017; 46: 5864
- 35e Dhakshinamoorthy A, Asiri AM, Garcia H. ACS Catal. 2019; 9: 1081
- 36a Festa AA, Voskressensky LG, Van der Eycken EV. Chem. Soc. Rev. 2019; 48: 4401
- 36b Chu X.-Q, Ge D, Shen Z.-L, Loh T.-P. ACS Catal. 2018; 8: 258
- 36c Liu C, Yuan J, Gao M, Tang S, Li W, Shi R, Lei A. Chem. Rev. 2015; 115: 12138
For selected examples, see:
For selected examples, see:
For selected reviews, see:
For selected examples, see:
For selected reviews, see:
For selected reviews, see:
For selected reviews, see:
For selected reviews, see: