Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000070.xml
Semin Musculoskelet Radiol 2020; 24(04): 428-440
DOI: 10.1055/s-0040-1708825
DOI: 10.1055/s-0040-1708825
Review Article
Quantitative Musculoskeletal Tumor Imaging
Abstract
The role of quantitative magnetic resonance imaging (MRI) and positron emission tomography/computed tomography (PET/CT) techniques continues to grow and evolve in the evaluation of musculoskeletal tumors. In this review we discuss the MRI quantitative techniques of volumetric measurement, chemical shift imaging, diffusion-weighted imaging, elastography, spectroscopy, and dynamic contrast enhancement. We also review quantitative PET techniques in the evaluation of musculoskeletal tumors, as well as virtual surgical planning and three-dimensional printing.
Keywords
sarcoma - quantitative - magnetic resonance imaging - positron emission tomography/computed tomographyPublication History
Article published online:
29 September 2020
© 2020. Thieme. All rights reserved.
Thieme Medical Publishers
333 Seventh Avenue, New York, NY 10001, USA.
-
References
- 1 Broski SM, Johnson GB, Howe BM. , et al. Evaluation of (18)F-FDG PET and MRI in differentiating benign and malignant peripheral nerve sheath tumors. Skeletal Radiol 2016; 45 (08) 1097-1105
- 2 Jo VY, Fletcher CD. WHO classification of soft tissue tumours: an update based on the 2013 (4th) edition. Pathology 2014; 46 (02) 95-104
- 3 Eisenhauer EA, Therasse P, Bogaerts J. , et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 2009; 45 (02) 228-247
- 4 Subhawong TK, Jacobs MA, Fayad LM. Insights into quantitative diffusion-weighted MRI for musculoskeletal tumor imaging. AJR Am J Roentgenol 2014; 203 (03) 560-572
- 5 Guo J, Reddick WE, Glass JO. , et al. Dynamic contrast-enhanced magnetic resonance imaging as a prognostic factor in predicting event-free and overall survival in pediatric patients with osteosarcoma. Cancer 2012; 118 (15) 3776-3785
- 6 Miller AB, Hoogstraten B, Staquet M, Winkler A. Reporting results of cancer treatment. Cancer 1981; 47 (01) 207-214
- 7 Benz MR, Allen-Auerbach MS, Eilber FC. , et al. Combined assessment of metabolic and volumetric changes for assessment of tumor response in patients with soft-tissue sarcomas. J Nucl Med 2008; 49 (10) 1579-1584
- 8 Hong JH, Jee WH, Jung CK, Jung JY, Shin SH, Chung YG. Soft tissue sarcoma: adding diffusion-weighted imaging improves MR imaging evaluation of tumor margin infiltration. Eur Radiol 2019; 29 (05) 2589-2597
- 9 Bahig H, Roberge D, Bosch W. , et al. Agreement among RTOG sarcoma radiation oncologists in contouring suspicious peritumoral edema for preoperative radiation therapy of soft tissue sarcoma of the extremity. Int J Radiat Oncol Biol Phys 2013; 86 (02) 298-303
- 10 Roberge D, Skamene T, Nahal A, Turcotte RE, Powell T, Freeman C. Radiological and pathological response following pre-operative radiotherapy for soft-tissue sarcoma. Radiother Oncol 2010; 97 (03) 404-407
- 11 Pitson G, Robinson P, Wilke D. , et al. Radiation response: an additional unique signature of myxoid liposarcoma. Int J Radiat Oncol Biol Phys 2004; 60 (02) 522-526
- 12 de Vreeze RS, de Jong D, Haas RL, Stewart F, van Coevorden F. Effectiveness of radiotherapy in myxoid sarcomas is associated with a dense vascular pattern. Int J Radiat Oncol Biol Phys 2008; 72 (05) 1480-1487
- 13 Disler DG, McCauley TR, Ratner LM, Kesack CD, Cooper JA. In-phase and out-of-phase MR imaging of bone marrow: prediction of neoplasia based on the detection of coexistent fat and water. AJR Am J Roentgenol 1997; 169 (05) 1439-1447
- 14 Zajick Jr DC, Morrison WB, Schweitzer ME, Parellada JA, Carrino JA. Benign and malignant processes: normal values and differentiation with chemical shift MR imaging in vertebral marrow. Radiology 2005; 237 (02) 590-596
- 15 Erly WK, Oh ES, Outwater EK. The utility of in-phase/opposed-phase imaging in differentiating malignancy from acute benign compression fractures of the spine. AJNR Am J Neuroradiol 2006; 27 (06) 1183-1188
- 16 Ragab Y, Emad Y, Gheita T. , et al. Differentiation of osteoporotic and neoplastic vertebral fractures by chemical shift in-phase and out-of-phase MR imaging. Eur J Radiol 2009; 72 (01) 125-133
- 17 Costa FM, Ferreira EC, Vianna EM. Diffusion-weighted magnetic resonance imaging for the evaluation of musculoskeletal tumors. Magn Reson Imaging Clin N Am 2011; 19 (01) 159-180
- 18 Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988; 168 (02) 497-505
- 19 Fayad LM, Jacobs MA, Wang X, Carrino JA, Bluemke DA. Musculoskeletal tumors: how to use anatomic, functional, and metabolic MR techniques. Radiology 2012; 265 (02) 340-356
- 20 Chhabra A, Ashikyan O, Slepicka C. , et al. Conventional MR and diffusion-weighted imaging of musculoskeletal soft tissue malignancy: correlation with histologic grading. Eur Radiol 2019; 29 (08) 4485-4494
- 21 Hayashida Y, Yakushiji T, Awai K. , et al. Monitoring therapeutic responses of primary bone tumors by diffusion-weighted image: Initial results. Eur Radiol 2006; 16 (12) 2637-2643
- 22 van Rijswijk CS, Kunz P, Hogendoorn PC, Taminiau AH, Doornbos J, Bloem JL. Diffusion-weighted MRI in the characterization of soft-tissue tumors. J Magn Reson Imaging 2002; 15 (03) 302-307
- 23 Ogawa M, Kan H, Arai N. , et al. Differentiation between malignant and benign musculoskeletal tumors using diffusion kurtosis imaging. Skeletal Radiol 2019; 48 (02) 285-292
- 24 Teixeira PA, Gay F, Chen B. , et al. Diffusion-weighted magnetic resonance imaging for the initial characterization of non-fatty soft tissue tumors: correlation between T2 signal intensity and ADC values. Skeletal Radiol 2016; 45 (02) 263-271
- 25 Ahlawat S, Khandheria P, Subhawong TK, Fayad LM. Differentiation of benign and malignant skeletal lesions with quantitative diffusion weighted MRI at 3T. Eur J Radiol 2015; 84 (06) 1091-1097
- 26 Surov A, Nagata S, Razek AA, Tirumani SH, Wienke A, Kahn T. Comparison of ADC values in different malignancies of the skeletal musculature: a multicentric analysis. Skeletal Radiol 2015; 44 (07) 995-1000
- 27 Surov A, Behrmann C. Diffusion-weighted imaging of skeletal muscle lymphoma. Skeletal Radiol 2014; 43 (07) 899-903
- 28 Baur A, Stäbler A, Brüning R. , et al. Diffusion-weighted MR imaging of bone marrow: differentiation of benign versus pathologic compression fractures. Radiology 1998; 207 (02) 349-356
- 29 Herneth AM, Philipp MO, Naude J. , et al. Vertebral metastases: assessment with apparent diffusion coefficient. Radiology 2002; 225 (03) 889-894
- 30 Maeda M, Sakuma H, Maier SE, Takeda K. Quantitative assessment of diffusion abnormalities in benign and malignant vertebral compression fractures by line scan diffusion-weighted imaging. AJR Am J Roentgenol 2003; 181 (05) 1203-1209
- 31 Maeda M, Matsumine A, Kato H. , et al. Soft-tissue tumors evaluated by line-scan diffusion-weighted imaging: influence of myxoid matrix on the apparent diffusion coefficient. J Magn Reson Imaging 2007; 25 (06) 1199-1204
- 32 Padhani AR, Liu G, Koh DM. , et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 2009; 11 (02) 102-125
- 33 Uhl M, Saueressig U, van Buiren M. , et al. Osteosarcoma: preliminary results of in vivo assessment of tumor necrosis after chemotherapy with diffusion- and perfusion-weighted magnetic resonance imaging. Invest Radiol 2006; 41 (08) 618-623
- 34 Del Grande F, Subhawong T, Weber K, Aro M, Mugera C, Fayad LM. Detection of soft-tissue sarcoma recurrence: added value of functional MR imaging techniques at 3.0 T. Radiology 2014; 271 (02) 499-511
- 35 Baur A, Huber A, Arbogast S. , et al. Diffusion-weighted imaging of tumor recurrences and posttherapeutical soft-tissue changes in humans. Eur Radiol 2001; 11 (05) 828-833
- 36 Verstraete KL, De Deene Y, Roels H, Dierick A, Uyttendaele D, Kunnen M. Benign and malignant musculoskeletal lesions: dynamic contrast-enhanced MR imaging—parametric “first-pass” images depict tissue vascularization and perfusion. Radiology 1994; 192 (03) 835-843
- 37 Winfield JM, Payne GS, Weller A, deSouza NM. DCE-MRI, DW-MRI, and MRS in cancer: challenges and advantages of implementing qualitative and quantitative multi-parametric imaging in the clinic. Top Magn Reson Imaging 2016; 25 (05) 245-254
- 38 Pepin K, Grimm R, Kargar S. , et al. Soft tissue sarcoma stiffness and perfusion evaluation by MRE and DCE-MRI for radiation therapy response assessment: a technical feasibility study. Biomed Phys Eng Express 2019; 5 (04) 047003
- 39 Huang W, Beckett BR, Tudorica A. , et al. Evaluation of soft tissue sarcoma response to preoperative chemoradiotherapy using dynamic contrast-enhanced magnetic resonance imaging. Tomography 2016; 2 (04) 308-316
- 40 Debernard L, Leclerc GE, Robert L, Charleux F, Bensamoun SF. In vivo characterization of the muscle viscoelasticity in passive and active conditions using multifrequency MR elastography. J Musculoskelet Res 2013; 16 (02) 1350008
- 41 Chakouch MK, Charleux F, Bensamoun SF. Quantifying the elastic property of nine thigh muscles using magnetic resonance elastography. PLOS One 2015; 10 (09) e0138873
- 42 Barnhill E, Kennedy P, Brown C, van Beek E, Roberts N. Magnetic resonance elastography of skeletal muscle captures individual heterogeneity in a knee extension task. Br J Sports Med 2013; 47 (17) e4-e4
- 43 Pepin KM, Ehman RL, McGee KP. Magnetic resonance elastography (MRE) in cancer: Technique, analysis, and applications. Prog Nucl Magn Reson Spectrosc 2015; 90-91: 32-48
- 44 Subhawong TK, Wang X, Durand DJ. , et al. Proton MR spectroscopy in metabolic assessment of musculoskeletal lesions. AJR Am J Roentgenol 2012; 198 (01) 162-172
- 45 Gondim Teixeira PA, Ledrich M, Kauffmann F. , et al. Qualitative 3-T proton MR spectroscopy for the characterization of musculoskeletal neoplasms: update on diagnostic performance and indications. AJR Am J Roentgenol 2017; 208 (06) 1312-1319
- 46 Lee CW, Lee J-H, Kim DH. , et al. Proton magnetic resonance spectroscopy of musculoskeletal lesions at 3 T with metabolite quantification. Clin Imaging 2010; 34 (01) 47-52
- 47 Sah PL, Sharma R, Kandpal H. , et al. In vivo proton spectroscopy of giant cell tumor of the bone. AJR Am J Roentgenol 2008; 190 (02) W133-W139
- 48 Wang CK, Li CW, Hsieh TJ. , et al. In vivo 1H MRS for musculoskeletal lesion characterization: which factors affect diagnostic accuracy?. NMR Biomed 2012; 25 (02) 359-368
- 49 Fayad LM, Bluemke DA, McCarthy EF, Weber KL, Barker PB, Jacobs MA. Musculoskeletal tumors: use of proton MR spectroscopic imaging for characterization. J Magn Reson Imaging 2006; 23 (01) 23-28
- 50 Fayad LM, Barker PB, Jacobs MA. , et al. Characterization of musculoskeletal lesions on 3-T proton MR spectroscopy. AJR Am J Roentgenol 2007; 188 (06) 1513-1520
- 51 Qi ZH, Li CF, Li ZF, Zhang K, Wang Q, Yu DX. Preliminary study of 3T 1H MR spectroscopy in bone and soft tissue tumors. Chin Med J (Engl) 2009; 122 (01) 39-43
- 52 Cirkovic P, Mihailovic J, Paripovic L. , et al. Evaluation of predictive value of 1H MR spectroscopy for response of neoadjuvant chemotherapy in musculoskeletal tumors. J BUON 2018; 23 (06) 1867-1873
- 53 Hsieh TJ, Li CW, Chuang HY, Liu GC, Wang CK. Longitudinally monitoring chemotherapy effect of malignant musculoskeletal tumors with in vivo proton magnetic resonance spectroscopy: an initial experience. J Comput Assist Tomogr 2008; 32 (06) 987-994
- 54 Lim HJ, Johnny Ong CA, Tan JW, Ching Teo MC. Utility of positron emission tomography/computed tomography (PET/CT) imaging in the evaluation of sarcomas: A systematic review. Crit Rev Oncol Hematol 2019; 143: 1-13
- 55 Etchebehere EC, Hobbs BP, Milton DR. , et al. Assessing the role of 18F-FDG PET and 18F-FDG PET/CT in the diagnosis of soft tissue musculoskeletal malignancies: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging 2016; 43 (05) 860-870
- 56 Bauer HC, Trovik CS, Alvegård TA. , et al. Monitoring referral and treatment in soft tissue sarcoma: study based on 1,851 patients from the Scandinavian Sarcoma Group Register. Acta Orthop Scand 2001; 72 (02) 150-159
- 57 Coindre JM, Terrier P, Bui NB. , et al. Prognostic factors in adult patients with locally controlled soft tissue sarcoma. A study of 546 patients from the French Federation of Cancer Centers Sarcoma Group. J Clin Oncol 1996; 14 (03) 869-877
- 58 Stefanovski PD, Bidoli E, De Paoli A. , et al. Prognostic factors in soft tissue sarcomas: a study of 395 patients. Eur J Surg Oncol 2002; 28 (02) 153-164
- 59 Im HJ, Bradshaw T, Solaiyappan M, Cho SY. Current methods to define metabolic tumor volume in positron emission tomography: which one is better?. Nucl Med Mol Imaging 2018; 52 (01) 5-15
- 60 Benz MR, Dry SM, Eilber FC. , et al. Correlation between glycolytic phenotype and tumor grade in soft-tissue sarcomas by 18F-FDG PET. J Nucl Med 2010; 51 (08) 1174-1181
- 61 Tateishi U, Yamaguchi U, Seki K, Terauchi T, Arai Y, Hasegawa T. Glut-1 expression and enhanced glucose metabolism are associated with tumour grade in bone and soft tissue sarcomas: a prospective evaluation by [18F]fluorodeoxyglucose positron emission tomography. Eur J Nucl Med Mol Imaging 2006; 33 (06) 683-691
- 62 Brenner W, Eary JF, Hwang W, Vernon C, Conrad EU. Risk assessment in liposarcoma patients based on FDG PET imaging. Eur J Nucl Med Mol Imaging 2006; 33 (11) 1290-1295
- 63 Nanni C, Gasbarrini A, Cappelli A. , et al. FDG PET/CT for bone and soft-tissue biopsy. Eur J Nucl Med Mol Imaging 2015; 42 (08) 1333-1334
- 64 Rakheja R, Makis W, Skamene S. , et al. Correlating metabolic activity on 18F-FDG PET/CT with histopathologic characteristics of osseous and soft-tissue sarcomas: a retrospective review of 136 patients. AJR Am J Roentgenol 2012; 198 (06) 1409-1416
- 65 Benz MR, Czernin J, Dry SM. , et al. Quantitative F18-fluorodeoxyglucose positron emission tomography accurately characterizes peripheral nerve sheath tumors as malignant or benign. Cancer 2010; 116 (02) 451-458
- 66 Chirindel A, Chaudhry M, Blakeley JO, Wahl R. 18F-FDG PET/CT qualitative and quantitative evaluation in neurofibromatosis type 1 patients for detection of malignant transformation: comparison of early to delayed imaging with and without liver activity normalization. J Nucl Med 2015; 56 (03) 379-385
- 67 Salamon J, Veldhoen S, Apostolova I. , et al. 18F-FDG PET/CT for detection of malignant peripheral nerve sheath tumours in neurofibromatosis type 1: tumour-to-liver ratio is superior to an SUVmax cut-off. Eur Radiol 2014; 24 (02) 405-412
- 68 Lunn BW, Littrell LA, Wenger DE, Broski SM. 18F-FDG PET/CT and MRI features of myxoid liposarcomas and intramuscular myxomas. Skeletal Radiol 2018; 47 (12) 1641-1650
- 69 Costelloe CM, Chuang HH, Madewell JE. FDG PET/CT of primary bone tumors. AJR Am J Roentgenol 2014; 202 (06) W521-W531
- 70 Broski SM, Murdoch NM, Skinner JA, Wenger DE. Pigmented villonodular synovitis: potential pitfall on oncologic 18F-FDG PET/CT. Clin Nucl Med 2016; 41 (01) e24-e31
- 71 Kim JD, Lee HW. Hibernoma: intense uptake on F18-FDG PET/CT. Nucl Med Mol Imaging 2012; 46 (03) 218-222
- 72 Schulte M, Brecht-Krauss D, Heymer B. , et al. Grading of tumors and tumorlike lesions of bone: evaluation by FDG PET. J Nucl Med 2000; 41 (10) 1695-1701
- 73 Tateishi U, Hosono A, Makimoto A. , et al. Comparative study of FDG PET/CT and conventional imaging in the staging of rhabdomyosarcoma. Ann Nucl Med 2009; 23 (02) 155-161
- 74 Völker T, Denecke T, Steffen I. , et al. Positron emission tomography for staging of pediatric sarcoma patients: results of a prospective multicenter trial. J Clin Oncol 2007; 25 (34) 5435-5441
- 75 Kneisl JS, Patt JC, Johnson JC, Zuger JH. Is PET useful in detecting occult nonpulmonary metastases in pediatric bone sarcomas?. Clin Orthop Relat Res 2006; 450 (450) 101-104
- 76 Piperkova E, Mikhaeil M, Mousavi A. , et al. Impact of PET and CT in PET/CT studies for staging and evaluating treatment response in bone and soft tissue sarcomas. Clin Nucl Med 2009; 34 (03) 146-150
- 77 Roberge D, Vakilian S, Alabed YZ, Turcotte RE, Freeman CR, Hickeson M. FDG PET/CT in initial staging of adult soft-tissue sarcoma. Sarcoma 2012; 2012: 960194
- 78 Andersen KF, Fuglo HM, Rasmussen SH, Petersen MM, Loft A. Volume-based F-18 FDG PET/CT imaging markers provide supplemental prognostic information to histologic grading in patients with high-grade bone or soft tissue sarcoma. Medicine (Baltimore) 2015; 94 (51) e2319
- 79 Choi ES, Ha SG, Kim HS, Ha JH, Paeng JC, Han I. Total lesion glycolysis by 18F-FDG PET/CT is a reliable predictor of prognosis in soft-tissue sarcoma. Eur J Nucl Med Mol Imaging 2013; 40 (12) 1836-1842
- 80 Costelloe CM, Macapinlac HA, Madewell JE. , et al. 18F-FDG PET/CT as an indicator of progression-free and overall survival in osteosarcoma. J Nucl Med 2009; 50 (03) 340-347
- 81 Fuglø HM, Jørgensen SM, Loft A, Hovgaard D, Petersen MM. The diagnostic and prognostic value of 18F-FDG PET/CT in the initial assessment of high-grade bone and soft tissue sarcoma. A retrospective study of 89 patients. Eur J Nucl Med Mol Imaging 2012; 39 (09) 1416-1424
- 82 Hong SP, Lee SE, Choi YL. , et al. Prognostic value of 18F-FDG PET/CT in patients with soft tissue sarcoma: comparisons between metabolic parameters. Skeletal Radiol 2014; 43 (05) 641-648
- 83 Byun BH, Kong CB, Park J. , et al. Initial metabolic tumor volume measured by 18F-FDG PET/CT can predict the outcome of osteosarcoma of the extremities. J Nucl Med 2013; 54 (10) 1725-1732
- 84 Kubo T, Furuta T, Johan MP, Ochi M. Prognostic significance of (18)F-FDG PET at diagnosis in patients with soft tissue sarcoma and bone sarcoma; systematic review and meta-analysis. Eur J Cancer 2016; 58: 104-111
- 85 Li YJ, Dai YL, Cheng YS, Zhang WB, Tu CQ. Positron emission tomography (18)F-fluorodeoxyglucose uptake and prognosis in patients with bone and soft tissue sarcoma: A meta-analysis. Eur J Surg Oncol 2016; 42 (08) 1103-1114
- 86 Benz MR, Czernin J, Allen-Auerbach MS. , et al. FDG-PET/CT imaging predicts histopathologic treatment responses after the initial cycle of neoadjuvant chemotherapy in high-grade soft-tissue sarcomas. Clin Cancer Res 2009; 15 (08) 2856-2863
- 87 Hongtao L, Hui Z, Bingshun W. , et al. 18F-FDG positron emission tomography for the assessment of histological response to neoadjuvant chemotherapy in osteosarcomas: a meta-analysis. Surg Oncol 2012; 21 (04) e165-e170
- 88 Kong CB, Byun BH, Lim I. , et al. 18F-FDG PET SUVmax as an indicator of histopathologic response after neoadjuvant chemotherapy in extremity osteosarcoma. Eur J Nucl Med Mol Imaging 2013; 40 (05) 728-73
- 89 Byun BH, Kong CB, Lim I. , et al. Early response monitoring to neoadjuvant chemotherapy in osteosarcoma using sequential 18F-FDG PET/CT and MRI. Eur J Nucl Med Mol Imaging 2014; 41 (08) 1553-1562
- 90 Im HJ, Kim TS, Park SY. , et al. Prediction of tumour necrosis fractions using metabolic and volumetric 18F-FDG PET/CT indices, after one course and at the completion of neoadjuvant chemotherapy, in children and young adults with osteosarcoma. Eur J Nucl Med Mol Imaging 2012; 39 (01) 39-49
- 91 Evilevitch V, Weber WA, Tap WD. , et al. Reduction of glucose metabolic activity is more accurate than change in size at predicting histopathologic response to neoadjuvant therapy in high-grade soft-tissue sarcomas. Clin Cancer Res 2008; 14 (03) 715-720
- 92 Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med 2009; 50 (Suppl. 01) 122S-150S
- 93 Koshkin VS, Bolejack V, Schwartz LH. , et al. assessment of imaging modalities and response metrics in ewing sarcoma: correlation with survival. j Clin Oncol 2016; 34 (30) 3680-3685
- 94 Fendler WP, Lehmann M, Todica A. , et al. PET response criteria in solid tumors predicts progression-free survival and time to local or distant progression after chemotherapy with regional hyperthermia for soft-tissue sarcoma. J Nucl Med 2015; 56 (04) 530-537
- 95 Platzek I, Beuthien-Baumann B, Schramm G. , et al. FDG PET/MR in initial staging of sarcoma: initial experience and comparison with conventional imaging. Clin Imaging 2017; 42: 126-132
- 96 Loft A, Jensen KE, Löfgren J, Daugaard S, Petersen MM. PET/MRI for preoperative planning in patients with soft tissue sarcoma: a technical report of two patients. Case Rep Med 2013; 2013: 791078
- 97 Partovi S, Kohan AA, Zipp L. , et al. Hybrid PET/MR imaging in two sarcoma patients—clinical benefits and implications for future trials. Int J Clin Exp Med 2014; 7 (03) 640-648
- 98 Schuler MK, Richter S, Beuthien-Baumann B. , et al. PET/MRI imaging in high-risk sarcoma: first findings and solving clinical problems. Case Rep Oncol Med 2013; 2013: 793927
- 99 Zhang X, Chen YL, Lim R, Huang C, Chebib IA, El Fakhri G. Synergistic role of simultaneous PET/MRI-MRS in soft tissue sarcoma metabolism imaging. Magn Reson Imaging 2016; 34 (03) 276-279
- 100 Vallières M, Freeman CR, Skamene SR, El Naqa I. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol 2015; 60 (14) 5471-5496
- 101 Erfanian Y, Grueneisen J, Kirchner J. , et al. Integrated 18F-FDG PET/MRI compared to MRI alone for identification of local recurrences of soft tissue sarcomas: a comparison trial. Eur J Nucl Med Mol Imaging 2017; 44 (11) 1823-1831
- 102 Foley BD, Thayer WP, Honeybrook A, McKenna S, Press S. Mandibular reconstruction using computer-aided design and computer-aided manufacturing: an analysis of surgical results. J Oral Maxillofac Surg 2013; 71 (02) e111-e119
- 103 Metzler P, Geiger EJ, Alcon A, Ma X, Steinbacher DM. Three-dimensional virtual surgery accuracy for free fibula mandibular reconstruction: planned versus actual results. J Oral Maxillofac Surg 2014; 72 (12) 2601-2612
- 104 Rodby KA, Turin S, Jacobs RJ. , et al. Advances in oncologic head and neck reconstruction: systematic review and future considerations of virtual surgical planning and computer aided design/computer aided modeling. J Plast Reconstr Aesthet Surg 2014; 67 (09) 1171-1185
- 105 Roser SM, Ramachandra S, Blair H. , et al. The accuracy of virtual surgical planning in free fibula mandibular reconstruction: comparison of planned and final results. J Oral Maxillofac Surg 2010; 68 (11) 2824-2832
- 106 Saad A, Winters R, Wise MW, Dupin CL, St Hilaire H. Virtual surgical planning in complex composite maxillofacial reconstruction. Plast Reconstr Surg 2013; 132 (03) 626-633
- 107 Wang YY, Zhang HQ, Fan S. , et al. Mandibular reconstruction with the vascularized fibula flap: comparison of virtual planning surgery and conventional surgery. Int J Oral Maxillofac Surg 2016; 45 (11) 1400-1405
- 108 Punyaratabandhu T, Liacouras PC, Pairojboriboon S. Using 3D models in orthopedic oncology: presenting personalized advantages in surgical planning and intraoperative outcomes. 3D Print Med 2018; 4 (01) 12
- 109 Mulford JS, Babazadeh S, Mackay N. Three-dimensional printing in orthopaedic surgery: review of current and future applications. ANZ J Surg 2016; 86 (09) 648-653
- 110 Mulford JS, Babazadeh S, Mackay N. Three-dimensional printing in orthopaedic surgery: review of current and future applications. ANZ J Surg 2016; 86 (09) 648-653
- 111 Park JW, Kang HG, Lim KM, Park DW, Kim JH, Kim HS. Bone tumor resection guide using three-dimensional printing for limb salvage surgery. J Surg Oncol 2018; 118 (06) 898-905
- 112 Wu Z, Fu J, Wang Z. , et al. Three-dimensional virtual bone bank system for selecting massive bone allograft in orthopaedic oncology. Int Orthop 2015; 39 (06) 1151-1158
- 113 Gao T, Rivlin M, Abraham JA. Three-dimensional printing technology and role for custom implants in orthopedic oncology. Tech Orthop 2018; 33 (03) 166-174
- 114 Fan H, Fu J, Li X. , et al. Implantation of customized 3-D printed titanium prosthesis in limb salvage surgery: a case series and review of the literature. World J Surg Oncol 2015; 13: 308
- 115 Rengier F, Mehndiratta A, von Tengg-Kobligk H. , et al. 3D printing based on imaging data: review of medical applications. Int J CARS 2010; 5 (04) 335-341