Subscribe to RSS
DOI: 10.1055/s-0041-106540
Strain Elastography of Breast and Prostata Cancer: Similarities and Differences
Strain-Elastografie des Mamma- und Prostatakarzinoms: Gemeinsamkeiten und UnterschiedePublication History
06 July 2015
10 August 2015
Publication Date:
03 November 2015 (online)
Abstract
Typically both breast and prostate cancer present as tissue with decreased elasticity. Palpation is the oldest technique of tumor detection in both organs and is based on this principle. Thus an operator can grade a palpable mass as suspicious for cancer. Strain elastography as modern ultrasound technique allows the visualization of tissue elasticity in a color coded elastogram and can be understood as technical finger. The following article shows similarities and differences of ultrasound strain elastography in the diagnosis of breast and prostate cancer.
Key Points:
• In prostata cancer elastography, in breast cancer B-mode is the primary sonographic search modality.
• The diagnostic value of the search modalities change with increasing age.
• A cut-off value for a strain ratio is hard to obtain in the elastography of the prostata, because there is no stabile reference tissue in the prostata.
Citation Format:
• Daniaux M, Auer T, De Zordo T et al. Strain Elastography of Breast and Prostata Cancer: Similarities and Differences. Fortschr Röntgenstr 2016; 188: 1 – 6
Zusammenfassung
In der Regel stellen sich sowohl das Mammakarzinom als auch das Prostatakarzinom als Gewebe mit erniedrigter Elastizität dar. Darauf basiert auch die Palpationsmethode, welche beiden Organen als älteste Technik zum Tumornachweis dient und bei der die Untersucher hart ertastete Veränderungen als krebsverdächtig einstufen. Die Strain-Elastografie als moderne Ultraschalltechnik besitzt die Fähigkeit, die Verteilung der Gewebeelastizität farblich kodiert als Elastogramm am Monitor des Ultraschallgerätes darzustellen und kann somit als technischer Finger verstanden werden. Über Gemeinsamkeiten und Unterschiede der Ultraschall-Strain-Elastografie (USE) des Mammakarzinoms und Prostatakarzinoms wird im Folgenden berichtet.
-
Literatur
- 1 Heidenreich A, Bastian PJ, Bellmunt J et al. EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent-update 2013. European urology 2014; 65: 124-137
- 2 Kreienberg R, Albert US, Follmann M et al. Interdisziplinäre S3-Leitlinie für die Diagnostik, Therapie und Nachsorge des Mammakarzinoms. Senologie – Zeitschrift für Mammadiagnostik und -therapie 2013; 10: 164-192
- 3 Junker D, Schafer G, Kobel C et al. Comparison of real-time elastography and multiparametric MRI for prostate cancer detection: a whole-mount step-section analysis. American journal of roentgenology 2014; 202: W263-W269
- 4 Yerram NK, Volkin D, Turkbey B et al. Low suspicion lesions on multiparametric magnetic resonance imaging predict for the absence of high-risk prostate cancer. BJU Int 2012; 110: E783-E788
- 5 Krouskop TA, Wheeler TM, Kallel F et al. Elastic moduli of breast and prostate tissues under compression. Ultrason Imaging 1998; 20: 260-274
- 6 Ophir J, Cespedes I, Ponnekanti H et al. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging 1991; 13: 111-134
- 7 Pallwein L, Aigner F, Faschingbauer R et al. Prostate cancer diagnosis: value of real-time elastography. Abdom Imaging 2008; 33: 729-735
- 8 Ploussard G, Aronson S, Pelsser V et al. Impact of the type of ultrasound probe on prostate cancer detection rate and characterization in patients undergoing MRI-targeted prostate biopsies using cognitive fusion. World J Urol 2014; 32: 977-983
- 9 Junker D, De Zordo T, Quentin M et al. Real-time elastography of the prostate. BioMed research international 2014; 2014: 180804
- 10 Goddi A, Sacchi A, Magistretti G et al. Transrectal real-time elastography of the prostate: Normal patterns. Journal of ultrasound 2011; 14: 220-232
- 11 Isermann R, Grunwald S, Hatzung G et al. Breast lesion sizing by B-mode imaging and sonoelastography in comparison to histopathological sizing – a prospective study. Ultraschall in der Medizin 2011; 32: S21-S26
- 12 Trabulsi EJ, Sackett D, Gomella LG et al. Enhanced transrectal ultrasound modalities in the diagnosis of prostate cancer. Urology 2010; 76: 1025-1033
- 13 Mainiero MB, Goldkamp A, Lazarus E et al. Characterization of breast masses with sonography: can biopsy of some solid masses be deferred?. J Ultrasound Med 2005; 24: 161-167
- 14 Graf O, Helbich TH, Hopf G et al. Probably benign breast masses at US: is follow-up an acceptable alternative to biopsy?. Radiology 2007; 244: 87-93
- 15 Rifkin MD, Dähnert W, Kurtz AB. State of the art: endorectal sonography of the prostate gland. American Journal of Roentgenology 1990; 154: 691-700
- 16 Stavros AT, Thickman D, Rapp CL et al. Solid breast nodules: use of sonography to distinguish between benign and malignant lesions. Radiology 1995; 196: 123-134
- 17 Fischer T, Sack I, Thomas A. Characterization of focal breast lesions by means of elastography. Fortschr Röntgenstr 2013; 185: 816-823
- 18 Brock M, von Bodman C, Palisaar RJ et al. The impact of real-time elastography guiding a systematic prostate biopsy to improve cancer detection rate: a prospective study of 353 patients. J Urol 2012; 187: 2039-2043
- 19 Kamoi K, Okihara K, Ochiai A et al. The utility of transrectal real-time elastography in the diagnosis of prostate cancer. Ultrasound Med Biol 2008; 34: 1025-1032
- 20 Thomas A, Degenhardt F, Farrokh A et al. Significant differentiation of focal breast lesions: calculation of strain ratio in breast sonoelastography. Academic radiology 2010; 17: 558-563
- 21 Fischer T, Peisker U, Fiedor S et al. Significant differentiation of focal breast lesions: raw data-based calculation of strain ratio. Ultraschall in der Medizin 2012; 33: 372-379
- 22 Zhang Y, Tang J, Li YM et al. Differentiation of prostate cancer from benign lesions using strain index of transrectal real-time tissue elastography. Eur J Radiol 2012; 81: 857-862
- 23 Thomas A, Fischer T, Frey H et al. Real-time elastography – an advanced method of ultrasound: First results in 108 patients with breast lesions. Ultrasound in obstetrics & gynecology: the official journal of the International Society of Ultrasound in Obstetrics and Gynecology 2006; 28: 335-340
- 24 Aigner F, Pallwein L, Junker D et al. Value of real-time elastography targeted biopsy for prostate cancer detection in men with prostate specific antigen 1.25 ng/ml or greater and 4.00 ng/ml or less. J Urol 2010; 184: 913-917
- 25 Goddi A, Bonardi M, Alessi S. Breast elastography: A literature review. Journal of ultrasound 2012; 15: 192-198
- 26 Itoh A, Ueno E, Tohno E et al. Breast disease: clinical application of US elastography for diagnosis. Radiology 2006; 239: 341-350
- 27 Samani A, Zubovits J, Plewes D. Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples. Physics in medicine and biology 2007; 52: 1565-1576
- 28 Quinn EM, Coveney AP, Redmond HP. Use of magnetic resonance imaging in detection of breast cancer recurrence: a systematic review. Annals of surgical oncology 2012; 19: 3035-3041
- 29 Langer DL, van der Kwast TH, Evans AJ et al. Intermixed normal tissue within prostate cancer: effect on MR imaging measurements of apparent diffusion coefficient and T2 – sparse versus dense cancers. Radiology 2008; 249: 900-908
- 30 Junker D, Schafer G, Aigner F et al. Potentials and limitations of real-time elastography for prostate cancer detection: a whole-mount step section analysis. ScientificWorldJournal 2012; 2012: 193213
- 31 Nygard Y, Haukaas SA, Halvorsen OJ et al. A positive real-time elastography is an independent marker for detection of high-risk prostate cancers in the primary biopsy setting. BJU Int 2014; 113: E90-E97
- 32 Konig K, Scheipers U, Pesavento A et al. Initial experiences with real-time elastography guided biopsies of the prostate. J Urol 2005; 174: 115-117