Subscribe to RSS
DOI: 10.1055/s-0041-1725046
Chalcogen Bond versus Weak Hydrogen Bond: Changing Contributions in Determining the Crystal Packing of [1,2,5]-Chalcogenadiazole-Fused Tetracyanonaphthoquinodimethanes
Funding Information We thank the Japan Society for the Promotion of Science Kakenhi (Nos. 19K15528, 20H02719, 20K21184). Financial supports from the Hattori Hokokai Foundation, Toyota Riken Scholar, the NOVARTIS Foundation (Japan) for the Promotion of Science, and the Orange Foundation for Hepatitis B Suit Hokkaido are gratefully acknowledged.
Abstract
The crystal structures of a series of tetracyanonaphthoquinodimethanes fused with a selenadiazole or thiadiazole ring revealed that their molecular packing is determined mainly by two intermolecular interactions: chalcogen bond (ChB) and weak hydrogen bond (WHB). ChB between Se and a cyano group dictates the packing of selenadiazole derivatives, whereas the S-based ChB is much weaker and competes with WHB in thiadiazole analogues. This difference can be explained by different electrostatic potentials as revealed by density functional theory calculations. A proper molecular design that weakens WHB can change the contribution of ChB in determining the crystal packing of thiadiazole derivatives.
Key words
crystal engineering - weak hydrogen bonds - chalcogen bonds - chalcogenadiazoles - tetracyanoquinodimethanes - X-ray analysisSupporting Information
Following data are given in the Supporting Information: details of DFT calculations of 1B, 1C, 2B, and 2C; supplementary figures and table of X-ray analyses of 1B, 1C, 2B, and 2C; spectral charts for 1B, 1C, 2B, and 2C. Supporting Information for this article is available online at https://doi.org/10.1055/s-0041-1725046.
Dedicated to Peter Bäuerle on the occasion of his 65th birthday.
Publication History
Received: 12 January 2021
Accepted: 27 January 2021
Article published online:
01 April 2021
© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- For pioneering reviews:
- 1a Desiraju GR. Acc. Chem. Res. 1991; 24: 290
- 1b Desiraju GR. Acc. Chem. Res. 1996; 29: 441
- 1c Desiraju GR. Chem. Commun. 2005; 2995
- 2a Huynh H.-T, Jeannin O, Fourmigué M. Chem. Commun. 2017; 53: 8467
- 2b Zhang Y, Wang W. Crystals 2018; 8: 163
- 2c Scilabra P, Terraneo G, Resnati G. Acc. Chem. Res. 2019; 52: 1313
- 3a Desiraju GR. Angew. Chem. Int. Ed. Engl. 1995; 34: 2311
- 3b Nangia A, Desiraju GR. Acta Crystallogr. 1998; A54: 934
- 3c Metrangolo P, Neukirch H, Pilati T, Resnati G. Acc. Chem. Res. 2005; 38: 386
- 3d Desiraju GR. J. Am. Chem. Soc. 2013; 135: 9952
- For recent reviews:
- 4a Lim JY. C, Beer PD. Chem 2018; 4: 731
- 4b Vogel L, Wonner P, Huber SM. Angew. Chem. Int. Ed. 2019; 58: 1880
- 4c Kolb S, Oliver GA, Werz DB. Angew. Chem. Int. Ed. 2020; 59: 22306
- 4d Ho PC, Wang JZ, Meloni F, Vargas-Baca I. Coord. Chem. Rev. 2020; 422: 213464
- For early studies:
- 5a Werz DB, Gleiter R, Rominger F. J. Am. Chem. Soc. 2002; 124: 10638
- 5b Werz DB, Staeb TH, Benisch C, Rausch BJ, Rominger F, Gleiter R. Org. Lett. 2002; 4: 339
- 5c Werz DB, Gleiter R, Rominger F. J. Org. Chem. 2002; 67: 4290
- 5d Werz DB, Gleiter R, Rominger F. J. Org. Chem. 2004; 69: 2945
- 5e Cozzolino AF, Vargas-Baca I, Mansour S, Mahmoudkhani AH. J. Am. Chem. Soc. 2005; 127: 3184
- 5f Cozzolino AF, Vargas-Baca I. J. Organomet. Chem. 2007; 692: 2654
- 6a Wang W, Ji B, Zhang Y. J. Phys. Chem. A 2009; 113: 8132
- 6b Bauzá A, Quiñonero D, Deyà PM, Frontera A. CrystEngComm 2013; 15: 3137
- 6c Pascoe DJ, Ling KB, Cockroft SL. J. Am. Chem. Soc. 2017; 139: 15160
- 6d Sánchez-Sanz G, Trujillo C. J. Phys. Chem. A 2018; 122: 1369
- 7a Tsuzuki S, Sato N. J. Phys. Chem. B 2013; 117: 6849
- 7b Lonchakov AV, Rakitin OA, Gritsan NP, Zibarev AV. Molecules 2013; 18: 9850
- 7c Langis-Barsetti S, Maris T, Wuest JD. J. Org. Chem. 2017; 82: 5034
- 7d Riwar L.-J, Trapp N, Root K, Zenobi R, Diederich F. Angew. Chem. Int. Ed. 2018; 57: 17259
- 7e Ams MR, Trapp N, Schwab A, Milić JV, Diederich F. Chem. Eur. J. 2019; 25: 323
- 8a Yamashita Y, Suzuki T, Mukai T, Saito GJ. Chem. Soc., Chem. Commun. 1985; 1044
- 8b Suzuki T, Yamashita Y, Kabuto C, Miyashi T. J. Chem. Soc., Chem. Commun. 1989; 1102
- 9a Klapötke TM, Krumm B, Gálvez-Ruiz JC, Nöth H, Schwab I. Eur. J. Inorg. Chem. 2004; 4764
- 9b Klapötke TM, Krumm B. Inorg. Chem. 2008; 47: 7025
- 9c Berrueta Martínez Y, Rodríguez Pirani LS, Erben MF, Boese R, Reuter GC. G, Vishnevskiy YV, Mitzel NW, Della Védova CO. ChemPhysChem 2016; 17: 1463
- 9d Berrueta Martínez Y, Rodríguez Pirani LS, Erben MF, Boese R, Reuter CG, Vishnevskiy YV, Mitzel NW, Della Védova CO. J. Mol. Struct. 2017; 1132: 175
- 9e Previtali V, Sánchez-Sanz G, Trujillo C. ChemPhysChem 2019; 20: 3186
- 10a Kabuto C, Suzuki T, Yamashita Y, Mukai T. Chem. Lett. 1986; 15: 1433
- 10b Suzuki T, Kabuto C, Yamashita Y, Saito G, Mukai T, Miyashi T. Chem. Lett. 1987; 16: 2285
- 10c Suzuki T, Yamashita Y, Fukushima T, Miyashi T. Mol. Cryst. Liq. Cryst. 1997; 296: 165
- 11a Suzuki T, Kabuto C, Yamashita Y, Mukai T, Miyashi T, Saito G. Bull. Chem. Soc. Jpn. 1987; 60: 2111
- 11b Suzuki T, Kabuto C, Yamashita Y, Mukai T, Miyashi T, Saito G. Bull. Chem. Soc. Jpn. 1988; 61: 483
- 11c Suzuki T, Kabuto C, Yamashita Y, Mukai T, Miyashi T. J. Chem. Soc., Chem. Commun. 1988; 895
- 11d Suzuki T, Fujii H, Yamashita Y, Kabuto C, Tanaka S, Harasawa M, Mukai T, Miyashi T. J. Am. Chem. Soc. 1992; 114: 3034
- 11e Suzuki T, Fukushima T, Yamashita Y, Miyashi T. J. Am. Chem. Soc. 1994; 116: 2793
- 12 Ishigaki Y, Asai K, Jacquot de Rouville H.-P, Shimajiri T, Heitz V, Fujii-Shinomiya H, Suzuki T. Eur. J. Org. Chem. 2021; 990
- 13 Biot N, Bonafazi D. Coord. Chem. Rev. 2020; 413: 213243
- 14a Vishveshwara S. Chem. Phys. Lett. 1978; 59: 26
- 14b Sreerama N, Vishveshwara S. J. Mol. Struct. THEOCHEM 1985; 133: 139
- 14c Domagała M, Grabowski SJ. J. Phys. Chem. A 2005; 109: 5683
- 15a Dejiraju GR. J. Chem. Soc., Chem. Commun. 1989; 179
- 15b Pedireddi VR, Desiraju GR. J. Chem. Soc., Chem. Commun. 1992; 988
- 16a Akasaki Y, Aonuma H, Kongo K, Sato K, Nukada K, Marumo A. Jpn. Kokai Tokkyo Koho 1990; JP02097963A 19900410
- 16b Yamashita Y, Tanaka S, Imaeda K. Synth. Met. 1995; 71: 1965
- 16c Shi S, Katz TJ, Yang BV, Liu L. J. Org. Chem. 1995; 60: 1285
- 17a Lehnert W. Tetrahedron Lett. 1970; 11: 4723
- 17b Aumüller A, Hünig S. Liebigs Ann. Chem. 1984; 618
- 18a Schubert U, Hünig S, Aumüller A. Liebigs Ann. Chem. 1985; 1216
- 18b Martin N, Hanack M. J. Chem. Soc., Chem. Commun. 1988; 1522
- 18c Gómez R, Seoane C, Segura JL. Chem. Soc. Rev. 2007; 36: 1305
- 18d Bureš F, Bernd Schweizer W, Boudon C, Gisselbrecht J.-P, Gross M, Diederich F. Eur. J. Org. Chem. 2008; 994
- 18e Ishigaki Y, Sugawara K, Yoshida M, Kato M, Suzuki T. Bull. Chem. Soc. Jpn. 2019; 92: 1211
- 18f Ishigaki Y, Hayashi Y, Suzuki T. J. Am. Chem. Soc. 2019; 141: 18293
- 18g Ishigaki Y, Hashimoto T, Sugawara K, Suzuki S, Suzuki T. Angew. Chem. Int. Ed. 2020; 59: 6581
- 19 Pauling L. The nature of the chemical bond and the structure of molecules and crystals: An introduction to modern structural chemistry. 3rd ed;. Cornell University Press; Ithaka, NY: 1960