CC BY-NC-ND 4.0 · Organic Materials 2021; 03(02): 090-096
DOI: 10.1055/s-0041-1725046
Focus Issue: Peter Bäuerle 65th Birthday
Original Article

Chalcogen Bond versus Weak Hydrogen Bond: Changing Contributions in Determining the Crystal Packing of [1,2,5]-Chalcogenadiazole-Fused Tetracyanonaphthoquinodimethanes

a   Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.
,
a   Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.
,
a   Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.
,
b   Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
,
c   Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
,
a   Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.
› Author Affiliations
Funding Information We thank the Japan Society for the Promotion of Science Kakenhi (Nos. 19K15528, 20H02719, 20K21184). Financial supports from the Hattori Hokokai Foundation, Toyota Riken Scholar, the NOVARTIS Foundation (Japan) for the Promotion of Science, and the Orange Foundation for Hepatitis B Suit Hokkaido are gratefully acknowledged.


Abstract

The crystal structures of a series of tetracyanonaphthoquinodimethanes fused with a selenadiazole or thiadiazole ring revealed that their molecular packing is determined mainly by two intermolecular interactions: chalcogen bond (ChB) and weak hydrogen bond (WHB). ChB between Se and a cyano group dictates the packing of selenadiazole derivatives, whereas the S-based ChB is much weaker and competes with WHB in thiadiazole analogues. This difference can be explained by different electrostatic potentials as revealed by density functional theory calculations. A proper molecular design that weakens WHB can change the contribution of ChB in determining the crystal packing of thiadiazole derivatives.

Supporting Information

Following data are given in the Supporting Information: details of DFT calculations of 1B, 1C, 2B, and 2C; supplementary figures and table of X-ray analyses of 1B, 1C, 2B, and 2C; spectral charts for 1B, 1C, 2B, and 2C. Supporting Information for this article is available online at https://doi.org/10.1055/s-0041-1725046.


Dedicated to Peter Bäuerle on the occasion of his 65th birthday.


Supporting Information



Publication History

Received: 12 January 2021

Accepted: 27 January 2021

Article published online:
01 April 2021

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany