CC BY-NC-ND 4.0 · Organic Materials 2021; 03(02): 221-227
DOI: 10.1055/s-0041-1727181
Focus Issue: Peter Bäuerle 65th Birthday
Original Article

π-Extended Ladder-Type Conjugated Polymers via BN-Annulation

Peirong Qiang#
a   School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University,Shanghai 200240, P. R. China
,
Zuobang Sun#
a   School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University,Shanghai 200240, P. R. China
,
Bai Xue
a   School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University,Shanghai 200240, P. R. China
,
a   School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University,Shanghai 200240, P. R. China
› Author Affiliations


Abstract

Two kinds of ladder-type conjugated polymers were concisely synthesized by the formation of single-stranded conjugated polymers via Stille cross-couplings, followed by nitrogen-directed electrophilic borylations at electron-rich aromatic rings. The resulting BN-annulated polymers show good film-forming behaviors and high air and thermal stability. Their structurally shape-persistent rigid backbones render them with π-extended conjugation, allowing for efficient light harvesting in the low-energy regions, and emitting strong fluorescence with narrow emission widths.

Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/s-0041-1727181.


# Equally contributed.


Dedicated to Professor Peter Bäuerle on the occasion of his 65th birthday.


Supporting Information



Publication History

Received: 17 January 2021

Accepted: 01 March 2021

Article published online:
26 April 2021

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany