Subscribe to RSS
DOI: 10.1055/s-0042-104660
Imaging of Scaphoid Fractures According to the New S3 Guidelines
Bildgebende Diagnostik der Skaphoidfrakturen nach den aktuellen S3-LeitlinienPublication History
23 December 2015
03 March 2016
Publication Date:
13 April 2016 (online)
Abstract
Up to 30 % of acute scaphoid fractures are missed in conventional radiography. CT and MRI should be early performed in the diagnostic workflow, when radiograms (dorsopalmar, lateral and Stecher’s views) are negative or inconclusive in fracture detection. Significance of CT is different from that of MRI: Sensitivity of CT imaging (85 to 95 %) is superior to conventional radiography (about 70 %), but inferior to MRI (almost 100 %). However, CT (specificity 95 to 100 %) is able to provide more detailed anatomic information of the fracture pattern when compared to MRI (specificity 80 to 90 %). Particularly, differentiation of bone contusion (“bone bruise”) and non-displaced fracture can be difficult in MRI. Thus, CT indication is not only given for fracture detection, but also for assessing the morphology in scaphoid fractures (localization, fragment dislocation, comminuted zones) and the fragment instability, too. MRI should be limited to equivocal trauma cases presenting pain in the snuff box, but with inconclusive CT findings. In CT and MRI of scaphoid fractures, image display must be aligned along the longitudinal extension of the scaphoid, either by acquiring or reformatting oblique-sagittal and oblique-coronal planes.
Key points
• Radiography can be limited to the dorsopalmar, lateral and Stecher’s views in scaphoid fractures.
• In CT and MR imaging, the dedicated anatomy of the scaphoid has to be covered with oblique-sagittal and oblique-coronal images.
• CT provides most detailed information of scaphoid fractures (localization, fragment dislocation and instability pattern). However, its capability in detecting non-displaced fractures is inferior to MRI.
• All scaphoid fractures are seen in MRI. But differentiation of bone contusion (bone bruise) and a non-displaced fracture can be crucial.
• This order is recommended in the diagnostic algorithm of scaphoid fractures: 1. radiography, 2. CT, and 3. MRI.
Citation Format:
• Schmitt R, Rosenthal H. Imaging of Scaphoid Fractures According to the New S3 Guidelines. Fortschr Röntgenstr 2016; 188: 459 – 469
Zusammenfassung
In der Projektionsradiografie werden bis zu 30 % der Skaphoidfrakturen übersehen. Deshalb sollten die Schnittbildverfahren der CT und MRT großzügig eingesetzt werden, wenn die Projektionsradiogramme (dorsopalmare, seitliche, Stecheraufnahmen) keinen oder einen unsicheren Frakturnachweis ergeben. Die Aussagemöglichkeiten der Schnittbildverfahren müssen differenziert betrachtet werden: Die CT weist mit einer Sensitivität zwischen 85 % und 95 % mehr Frakturen als das konventionelle Röntgen nach, jedoch weniger als die MRT (Sensitivität annähernd 100 %). Demgegenüber liefert die CT (Spezifität 95 – 100 %) bessere anatomische Informationen zum Frakturmuster und zur Fragmentdislokation im Vergleich zur MRT (Spezifität 80 – 90 %), bei der die Differenzierung einer Knochenkontusion („bone bruise“) gegenüber einer nicht dislozierten Fraktur schwierig sein kann. Neben dem Frakturnachweis ist die CT daher bei jeder Skaphoidfraktur zur Beurteilung der Morphologie (Frakturlokalisation, Fragmentdislokation, Trümmerzone) und der Stabilität indiziert. In unsicherer Situation sollte die MRT eingesetzt werden, wenn am symptomatischen Kahnbein mit der CT der Frakturnachweis nicht gelingt. Die Schnittführung muss sowohl am CT als auch am MRT parallel zur Längsachse des Kahnbeins mit schräg-sagittalen und schräg-koronalen Schichten ausgerichtet werden.
-
References
- 1 Parvizi J, Wayman J, Kelly P et al. Combining the clinical signs improves diagnosis of scaphoid fractures. A prospective study with follow-up. J Hand Surg Br 1998; 23: 324-327
- 2 http://www.awmf.org/uploads/tx_szleitlinien/012-016l_S3_Skaphoidfraktur_2015-10.pdf
- 3 Russe O. Fracture of the carpal navicular. Diagnosis, non-operative treatment, and operative treatment. J Bone Joint Surg Am 1960; 42: 759-768
- 4 Rennie WJ, Finlay DB. Posttraumatic Cystlike Defects of the Scaphoid: Late Sign of Occult Microfracture and Useful Indicator of Delayed Union. Am J Roentgenol 2003; 180: 655-658
- 5 Herbert TJ, Fisher WE. Management of the fractured scaphoid using a new bone screw J. Bone Joint Surg Br 1984; 66: 114-123
- 6 Krimmer H, Schmitt R, Herbert T. Kahnbeinfrakturen – Diagnostik, Klassifikation und Therapie. Unfallchir 2000; 102: 812-819
- 7 Amirfeyz R, Bebbington A, Downing ND et al. Displaced scaphoid waist fractures: the use of a week 4 CT scan to predict the likelihood of union with nonoperative treatment. Hand Surg Eur Vol 2011; 36: 498-502
- 8 Stecher WR. Roentgenography of the carpal navicular bone. Am J Roentgenol 1937; 37: 704-705
- 9 Welling RD, Jacobson JA, Jamadar DA et al. MDCT and radiography of wrist fractures: radiographic sensitivity and fracture patterns. Am J Roentgenol 2008; 190: 10-16
- 10 Bain GI, Bennett JD, Richards RS et al. Longitudinal computed tomography of the scaphoid: a new technique. Skeletal Radiology 1995; 24: 271-273
- 11 Coblenz G, Christopoulos G, Fröhner S et al. Die Skaphoidfraktur und -pseudarthrose: Eine aktuelle Standortbestimmung zur radiologischen Diagnostik. Radiologe 2006; 46: 666-676
- 12 Ring D, Lozano-Calderon S. Imaging of suspected scaphoid fracture. J Hand Surg Am 2008; 33: 954-957
- 13 Yin ZG, Zhang JB, Kan SL et al. Diagnostic accuracy of imaging modalities for suspected scaphoid fractures: meta-analysis combined with latent class analysis. J Bone Joint Surg Br 2012; 94: 1077-1085
- 14 Lozano-Calderon S, Blazar P, Zurakowski D et al. Diagnosis of scaphoid fracture displacement with radiography and computed tomography. J Bone Joint Surg Am 2006; 88: 2695-2703
- 15 Buijze GA, Wijffels MM, Guitton TG et al. Interobserver Reliability of Computed Tomography to Diagnose Scaphoid Waist Fracture Union. J Hand Surg 2012; 37A: 250-254
- 16 Mallee W, Doornberg JN, Ring D et al. Comparison of CT and MRI for diagnosis of suspected scaphoid fractures. J Bone Joint Surg Am 2011; 93: 20-28
- 17 Rhemrev SJ, de Zwart AD, Kingma LM et al. Early computed tomography compared with bone scintigraphy in suspected scaphoid fractures. Clin Nucl Med 2010; 35: 931-934
- 18 Memarsadeghi M, Breitenseher MJ, Schaefer-Prokop C et al. Occult scaphoid fractures: comparison of multidetector CT and MR imaging. Initial experience. Radiology 2006; 240: 169-176
- 19 Singh HP, Forward D, Davis TR et al. Partial union of acute scaphoid fractures. J Hand Surg Br 2005; 30: 440-445
- 20 Sim E, Zechner W. Computertomographie nach operativer Versorgung von Kahnbeinfrakturen und -pseudarthrosen bei liegenden Implantaten. Handchir Mikrochir PlastChir 1991; 23: 67-73
- 21 Breitenseher MJ, Metz VM, Gilula LA et al. Radiographically occult scaphoid fractures: value of MR imaging in detection. Radiology 1997; 203: 245-250
- 22 Beeres FJ, Rhemrev SJ, den Hollander P et al. Early magnetic resonance imaging compared with bone scintigraphy in suspected scaphoid fractures. J Bone Joint Surg Br 2008; 90: 1205-1209
- 23 Hauger O, Bonnefoy O, Moinard M et al. Occult fractures of the waist the scaphoid: Early diagnosis by high-spatial-resolution sonography. Am J Roentgenol 2002; 178: 1239-1245
- 24 Geijer M, Borjesson AM, Gothlin JH. Clinical utility of tomosynthesis in suspected scaphoid fracture. A pilot study. Skeletal Radiol 2011; 40: 863-867
- 25 Krimmer H, Krapohl B, Sauerbier M et al. Der posttraumatische karpale Kollaps. Handchir Mikrochir Plast Chir 1997; 29: 228-233
- 26 Watson HK, Ryu J. Evolution of arthritis of the wrist. Clin Orthop Relat Res 1986; 202: 57-67