Subscribe to RSS
DOI: 10.1055/s-0042-110651
Erfassung motorisch-kognitiver Interaktionen bei Demenzerkrankungen im klinischen Alltag
Assessing Motor-Cognition Interaction of Patients with Cognitive Disorders: Clinical AspectsPublication History
Publication Date:
29 August 2016 (online)
Zusammenfassung
Hintergrund: Gangstörungen und kognitive Defizite treten bei hochbetagten Patienten häufig kombiniert auf. Für die Betreuung von Patienten mit motorischen und/oder kognitiven Defiziten ergeben sich für den klinischen Alltag folgende Konsequenzen: (1) Diagnostische Prozeduren sollten Untersuchungen beider Domänen abdecken. (2) Therapeutische Ansätze sollten mögliche Interaktionen und synergistische Effekte zwischen beiden Domänen berücksichtigen und gegebenenfalls nutzen.
Diskussion: In der klinischen Routine empfiehlt es sich, zur effektiven Abschätzung der motorisch-kognitiven Interaktionsfähigkeit eines Patienten die Gehfähigkeit unter Doppeltaufgaben (sog. Dual-Tasks) und alltagsnahen Bedingungen (z. B. im Timed-up-and-go-Test oder bei räumlicher Orientierung) zu prüfen. Bei kognitiven Störungen kommt es typischerweise zu einer Verlangsamung der selbstgewählten Ganggeschwindigkeit bei der Durchführung von Dual-Task Aufgaben. Die Veränderung der Ganggeschwindigkeit im Zeitverlauf ist ein guter Surrogatmarker für die kognitive Entwicklung von Patienten und die Funktionalität bei demenziellen Erkrankungen. Sie kann als reliabler Parameter bei therapeutischen Interventionen genutzt werden (z. B. im Rahmen eines Liquorablasses bei NPH).
In der Behandlung kombinierter Störungen von Gang und Kognition scheinen komplexe motorisch-kognitive Therapieformen, z. B. Thai Chi oder Dalcroze-Rhythmik synergistisch zu wirken und sollten bevorzugt angewendet werden. Dadurch können Sturzereignisse verhindert werden und exekutive Funktionen verbessert werden.
Abstract
Background: Difficulties of walking and deficits of cognitive functions appear to be associated in the elderly. Thus, clinical assessment in geriatry and neurology should focus on: (1) diagnostic approaches covering both domains of everyday functioning; (2) therapeutic interventions that take into account possible interactions and synergies of both domains.
Discussion: In order to assess the capability for motor-cognitive interactions in the elderly it is recommended to investigate walking patterns during dual-tasks (e.g. walking and counting backwards, walking and naming words) and to examine clinical tests of everyday mobility tasks, such as the Timed-up-and-go-Test and spatial navigation tasks. Patients with cognitive disorders often perform inferior with a reduction of walking speed and an increase of stepping variability. Dual-task performance appears to be a reliable parameter for long-term observations of the course of the disease. Moreover, it might improve the quality of the gait examination during diagnostic or therapeutic interventions (e.g. the spinal tap test in patients with NPH). Several studies further highlight gait deficits during dual-task walking as a marker for the everyday functioning and the quality of life in elderly persons and patients with cognitive disorders.
Therapeutic approaches in this context comprise complex motor-cognitive interventions, such as Thai Chi and Dalcroze rhythmic exercises. These interventions appear to act synergistically in motor and cognitive domains. First evidence for the efficacy for improving executive functions and reducing the fall risk of patients with cognitive impairments is given, thought randomized, controlled trials are rare.
-
Literatur
- 1 Patla AE, Frank JS, Winter DA. Balance control in the elderly: implications for clinical assessment and rehabilitation. Can J Public Health 1992; 83 (Suppl. 02) S29-S33
- 2 Cumming RG, Miller JP, Kelsey JL et al. Medications and multiple falls in elderly people: the St Louis OASIS study. Age & Ageing 1991; 20: 455-461
- 3 Waespe W, Walser H, Meier A et al. Neurological gait changes in old age: basic principles, senile gait. Schweiz Med Wochenschr 1989; 119: 1445-1453
- 4 Jahn K, Zwergal A, Schniepp R. Gait disturbances in old age: classification, diagnosis, and treatment from a neurological perspective. Dtsch Arztebl Int 2010; 107: 306-315 ; quiz 316
- 5 Luck T, Luppa M, Briel S et al. Mild cognitive impairment: incidence and risk factors: results of the leipzig longitudinal study of the aged. J Am Geriatr Soc 2010; 58: 1903-1910
- 6 Luck T, Luppa M, Briel S et al. Incidence of mild cognitive impairment: a systematic review. Dementia & Geriatric Cognitive Disorders 2010; 29: 164-175
- 7 Buracchio T, Dodge HH, Howieson D et al. The trajectory of gait speed preceding mild cognitive impairment. Arch Neurol 2010; 67: 980-986
- 8 Verghese J, Lipton RB, Hall CB et al. Abnormality of gait as a predictor of non-Alzheimer's dementia. N Engl J Med 2002; 347: 1761-1768
- 9 Alexander NB, Hausdorff JM. Guest editorial: linking thinking, walking, and falling. Journals of Gerontology Series A, Biological Sciences & Medical Sciences 2008; 63: 1325-1328
- 10 Bridenbaugh SA, Kressig RW. Motor cognitive dual tasking: early detection of gait impairment, fall risk and cognitive decline. Z Gerontol Geriatr 2015; 48: 15-21
- 11 Bridenbaugh SA, Kressig RW. Laboratory review: the role of gait analysis in seniors' mobility and fall prevention. Gerontology 2011; 57: 256-264
- 12 Beauchet O, Annweiler C, Callisaya ML et al. Poor Gait Performance and Prediction of Dementia: Results From a Meta-Analysis. J Am Med Dir Assoc 2016; 17: 482-490
- 13 Hausdorff JM, Buchman AS. What links gait speed and MCI with dementia? A fresh look at the association between motor and cognitive function. Journals of Gerontology Series A, Biological Sciences & Medical Sciences 2013; 68: 409-411
- 14 Verghese J, Wang C, Lipton RB et al. Motoric cognitive risk syndrome and the risk of dementia. Journals of Gerontology Series A, Biological Sciences & Medical Sciences 2013; 68: 412-418
- 15 Verghese J, LeValley A, Hall CB et al. Epidemiology of gait disorders in community-residing older adults. J Am Geriatr Soc 2006; 54: 255-261
- 16 Baloh RW, Vinters HV. White matter lesions and disequilibrium in older people. II. Clinicopathologic correlation. Arch Neurol 1995; 52: 975-981
- 17 Bugalho P, Alves L. Normal-pressure hydrocephalus: white matter lesions correlate negatively with gait improvement after lumbar puncture. Clinical Neurology & Neurosurgery 2007; 109: 774-778
- 18 Sonohara K, Kozaki K, Akishita M et al. White matter lesions as a feature of cognitive impairment, low vitality and other symptoms of geriatric syndrome in the elderly. Geriatr Gerontol Int 2008; 8: 93-100
- 19 Annweiler C, Beauchet O, Bartha R et al. Slow gait in MCI is associated with ventricular enlargement: results from the Gait and Brain Study. J Neural Transm (Vienna) 2013; 120: 1083-1092
- 20 Yamamoto D, Kazui H, Wada T et al. Association between milder brain deformation before a shunt operation and improvement in cognition and gait in idiopathic normal pressure hydrocephalus. Dementia & Geriatric Cognitive Disorders 2013; 35: 197-207
- 21 Beauchet O, Launay CP, Annweiler C et al. Hippocampal volume, early cognitive decline and gait variability: which association?. Exp Gerontol 2015; 61: 98-104
- 22 Brandt T, Schautzer F, Hamilton DA et al. Vestibular loss causes hippocampal atrophy and impaired spatial memory in humans. Brain 2005; 128: 2732-2741
- 23 Bergsneider M, Black PM, Klinge P et al. Surgical management of idiopathic normal-pressure hydrocephalus. Neurosurgery 2005; 57: S29-S39 ; discussion ii-v
- 24 Suchorska B, Kunz M, Schniepp R et al. Optimized surgical treatment for normal pressure hydrocephalus: comparison between gravitational and differential pressure valves. Acta Neurochir (Wien) 2015; 157: 703-709
- 25 Ayers E, Verghese J. Diagnosing motoric cognitive risk syndrome to predict progression to dementia. Neurodegener Dis Manag 2014; 4: 339-342
- 26 Verghese J, Holtzer R, Lipton RB et al. Quantitative gait markers and incident fall risk in older adults. Journals of Gerontology Series A, Biological Sciences & Medical Sciences 2009; 64: 896-901
- 27 Allali G, Ayers EI, Verghese J. Multiple modes of assessment of gait are better than one to predict incident falls. Archives of Gerontology & Geriatrics 2015; 60: 389-393
- 28 Ayers E, Verghese J. Motoric cognitive risk syndrome and risk of mortality in older adults. Alzheimers Dement 2015; 28: 556-564
- 29 Allali G, Ayers EI, Verghese J. Motoric Cognitive Risk Syndrome Subtypes and Cognitive Profiles. Journals of Gerontology Series A, Biological Sciences & Medical Sciences 2016; 71: 378-384
- 30 Beauchet O, Dubost V, Aminian K et al. Dual-task-related gait changes in the elderly: does the type of cognitive task matter?. J Mot Behav 2005; 37: 259-264
- 31 Pradhan C, Wuehr M, Neuhaeusser M et al. Multi-Variate Gait Data Analysis: Comparison Between Healthy Adults of Different Age Groups. Journal of Neuroscience and Neuroengineering 2013; 2: 542-549
- 32 Hollman JH, McDade EM, Petersen RC. Normative spatiotemporal gait parameters in older adults. Gait & Posture 2011; 34: 111-118
- 33 Fritz S, Lusardi M. White paper: “walking speed: the sixth vital sign”. J Geriatr Phys Ther 2009; 32: 46-49
- 34 Barak Y, Wagenaar RC, Holt KG. Gait characteristics of elderly people with a history of falls: a dynamic approach. Phys Ther 2006; 86: 1501-1510
- 35 Brach JS, Perera S, Studenski S et al. Meaningful change in measures of gait variability in older adults. Gait & Posture 2010; 31: 175-179
- 36 Gillain S, Drame M, Lekeu F et al. Gait speed or gait variability, which one to use as a marker of risk to develop Alzheimer disease? A pilot study. Aging Clinical & Experimental Research 2015; 28: 249-255
- 37 Hausdorff JM. Gait variability: methods, modeling and meaning. J Neuroeng Rehabil 2005; 2: 19
- 38 Nordin E, Moe-Nilssen R, Ramnemark A et al. Changes in step-width during dual-task walking predicts falls. Gait & Posture 2010; 32: 92-97
- 39 Aberg AC, Frykberg GE, Halvorsen K. Medio-lateral stability of sit-to-walk performance in older individuals with and without fear of falling. Gait & Posture 2010; 31: 438-443
- 40 Winter DA. Biomechanics and motor control of human gait: normal, elderly and pathological. 1991
- 41 Konig N, Singh NB, von Beckerath J et al. Is gait variability reliable? An assessment of spatio-temporal parameters of gait variability during continuous overground walking. Gait & Posture 2014; 39: 615-617
- 42 Jahn K, Zwergal A, Schniepp R. Gait disturbances in old age. Dtsch Arztebl Int 2010; 107: 306-316
- 43 Lundin-Olsson L, Nyberg L, Gustafson Y. “Stops walking when talking” as a predictor of falls in elderly people. Lancet 1997; 349: 617
- 44 Hausdorff JM, Schweiger A, Herman T et al. Dual-task decrements in gait: contributing factors among healthy older adults. Journals of Gerontology Series A, Biological Sciences & Medical Sciences 2008; 63: 1335-1343
- 45 Verghese J, Buschke H, Viola L et al. Validity of divided attention tasks in predicting falls in older individuals: a preliminary study. J Am Geriatr Soc 2002; 50: 1572-1576
- 46 Verhaeghen P, Steitz DW, Sliwinski MJ et al. Aging and dual-task performance: a meta-analysis. Psychology & Aging 2003; 18: 443
- 47 Montero-Odasso M, Muir SW, Speechley M. Dual-task complexity affects gait in people with mild cognitive impairment: the interplay between gait variability, dual tasking, and risk of falls. Archives of Physical Medicine & Rehabilitation 2012; 93: 293-299
- 48 Nascimbeni A, Caruso S, Salatino A et al. Dual task-related gait changes in patients with mild cognitive impairment. Funct Neurol 2015; 30: 59-65
- 49 Armand S, Allet L, Landis T et al. Interest of dual-task-related gait changes in idiopathic normal pressure hydrocephalus. Eur J Neurol 2011; 18: 1081-1084
- 50 Theill N, Martin M, Schumacher V et al. Simultaneously measuring gait and cognitive performance in cognitively healthy and cognitively impaired older adults: the Basel motor-cognition dual-task paradigm. J Am Geriatr Soc 2011; 59: 1012-1018
- 51 Schniepp R, Wuehr M, Neuhaeusser M et al. Locomotion speed determines gait variability in cerebellar ataxia and vestibular failure. Mov Disord 2012; 27: 125-131
- 52 Schniepp R, Wuehr M, Schlick C et al. Increased gait variability is associated with the history of falls in patients with cerebellar ataxia. J Neurol 2014; 261: 213-223
- 53 Wuehr M, Schniepp R, Schlick C et al. Sensory loss and walking speed related factors for gait alterations in patients with peripheral neuropathy. Gait Posture 2013; 39: 852-858
- 54 Schniepp R, Wuehr M, Huth S et al. The gait disorder in downbeat nystagmus syndrome. PLoS One 2014; 9: e105463
- 55 Wuehr M, Schniepp R, Pradhan C et al. Differential effects of absent visual feedback control on gait variability during different locomotion speeds. Exp Brain Res 2013; 224: 287-294
- 56 Wuehr M, Schniepp R, Schlick C et al. Sensory loss and walking speed related factors for gait alterations in patients with peripheral neuropathy. Gait & Posture 2014; 39: 852-858
- 57 Azulay JP, Mesure S, Amblard B et al. Visual control of locomotion in Parkinson's disease. Brain 1999; 122 (01) 111-120
- 58 Krafczyk S, Tietze S, Swoboda W et al. Artificial neural network: a new diagnostic posturographic tool for disorders of stance. Clin Neurophysiol 2006; 117: 1692-1698
- 59 Pradhan C, Wuehr M, Akrami F et al. Automated classification of neurological disorders of gait using spatio-temporal gait parameters. Journal of Electromyography & Kinesiology 2015; 25: 413-422
- 60 Podsiadlo D, Richardson S. The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc 1991; 39: 142-148
- 61 Barry E, Galvin R, Keogh C et al. Is the Timed Up and Go test a useful predictor of risk of falls in community dwelling older adults: a systematic review and meta-analysis. BMC Geriatr 2014; 14: 14
- 62 Verghese J, Robbins M, Holtzer R et al. Gait dysfunction in mild cognitive impairment syndromes. J Am Geriatr Soc 2008; 56: 1244-1251
- 63 Doi T, Shimada H, Park H et al. Cognitive function and falling among older adults with mild cognitive impairment and slow gait. Geriatr Gerontol Int 2015; 15: 1073-1078
- 64 Ihlen EA, Weiss A, Helbostad JL et al. The Discriminant Value of Phase-Dependent Local Dynamic Stability of Daily Life Walking in Older Adult Community-Dwelling Fallers and Nonfallers. Biomed Res Int 2015; 2015: 402596
- 65 Schwickert L, Becker C, Lindemann U et al. Fall detection with body-worn sensors: a systematic review. Z Gerontol Geriatr 2013; 46: 706-719
- 66 Van Lummel RC, Ainsworth E, Lindemann U et al. Automated approach for quantifying the repeated sit-to-stand using one body fixed sensor in young and older adults. Gait & Posture 2012; 38: 153-156
- 67 Schimpl M, Lederer C, Daumer M. Development and validation of a new method to measure walking speed in free-living environments using the actibelt(R) platform. PLoS One 2011; 6: e23080
- 68 Maguire EA, Burgess N, Donnett JG et al. Knowing where and getting there: a human navigation network. Science 1998; 280: 921-924
- 69 Zwergal A, Schoberl F, Xiong G et al. Anisotropy of Human Horizontal and Vertical Navigation in Real Space: Behavioral and PET Correlates. Cereb Cortex 2015; epub ahead of print
- 70 Monacelli AM, Cushman LA, Kavcic V et al. Spatial disorientation in Alzheimer's disease: the remembrance of things passed. Neurology 2003; 61: 1491-1497
- 71 Hort J, Laczo J, Vyhnalek M et al. Spatial navigation deficit in amnestic mild cognitive impairment. Proc Natl Acad Sci USA 2007; 104: 4042-4047
- 72 Nedelska Z, Andel R, Laczo J et al. Spatial navigation impairment is proportional to right hippocampal volume. Proc Natl Acad Sci USA 2012; 109: 2590-2594
- 73 Vlcek K, Laczo J. Neural correlates of spatial navigation changes in mild cognitive impairment and Alzheimer's disease. Front Behav Neurosci 2014; 8: 89
- 74 Braak H, Braak E. Staging of Alzheimer's disease-related neurofibrillary changes. Neurobiol Aging 1995; 16: 271-278 ; discussion 278–284
- 75 Moser EI, Kropff E, Moser MB. Place cells, grid cells, and the brain's spatial representation system. Annu Rev Neurosci 2008; 31: 69-89
- 76 Brandt T, Deutschlander A, Glasauer S et al. Expectation of sensory stimulation modulates brain activation during visual motion stimulation. Ann NY Acad Sci 2005; 1039: 325-336
- 77 Jahn K, Wagner J, Deutschlander A et al. Human hippocampal activation during stance and locomotion: fMRI study on healthy, blind, and vestibular-loss subjects. Ann NY Acad Sci 2009; 1164: 229-235
- 78 Kral VA. Senescent forgetfulness: benign and malignant. Canadian Medical Association Journal 1962; 86: 257
- 79 Petersen RC, Negash S. Mild cognitive impairment: an overview. CNS Spectr 2008; 13: 45-53
- 80 Petersen RC, Smith GE, Waring SC et al. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 1999; 56: 303-308
- 81 Winblad B, Palmer K, Kivipelto M et al. Mild cognitive impairment--beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med 2004; 256: 240-246
- 82 Sheridan PL, Hausdorff JM. The role of higher-level cognitive function in gait: executive dysfunction contributes to fall risk in Alzheimer's disease. Dementia & Geriatric Cognitive Disorders 2007; 24: 125-137
- 83 Doi T, Shimada H, Makizako H et al. Cognitive function and gait speed under normal and dual-task walking among older adults with mild cognitive impairment. BMC Neurol 2014; 14: 67
- 84 Hachinski VC. Multi-infarct dementia: a reappraisal. Alzheimer Disease & Associated Disorders 1991; 5: 64-68
- 85 Gold G, Kövari E, Herrmann FR et al. Cognitive consequences of thalamic, basal ganglia, and deep white matter lacunes in brain aging and dementia. Stroke 2005; 36: 1184-1188
- 86 Rockwood K, Bowler J, Erkinjuntti T et al. Subtypes of vascular dementia. Alzheimer Disease & Associated Disorders 1999; 13 (Suppl. 03) S59-S65
- 87 Gold G, Giannakopoulos P, Seux AL et al. Vascular dementia. Differential diagnosis and therapeutic issues. Ann Med Interne (Paris) 1998; 149: 202-208
- 88 Adams R, Fisher C, Hakim S et al. Symptomatic occult hydrocephalus with normal cerebrospinal-fluid pressure: a treatable syndrome. N Engl J Med 1965; 273: 117-126
- 89 Jaraj D, Rabiei K, Marlow T et al. Prevalence of idiopathic normal-pressure hydrocephalus. Neurology 2014; 82: 1449-1454
- 90 Calcagni ML, Taralli S, Mangiola A et al. Regional cerebral metabolic rate of glucose evaluation and clinical assessment in patients with idiopathic normal-pressure hydrocephalus before and after ventricular shunt placement: a prospective analysis. Clin Nucl Med 2013; 38: 426-431
- 91 Czosnyka ZH, Czosnyka M, Whitfield PC et al. Cerebral autoregulation among patients with symptoms of hydrocephalus. Neurosurgery 2002; 50: 526-532 ; discussion 532–523
- 92 Ziegelitz D, Starck G, Kristiansen D et al. Cerebral perfusion measured by dynamic susceptibility contrast MRI is reduced in patients with idiopathic normal pressure hydrocephalus. J Magn Reson Imaging 2014; 39: 1533-1542
- 93 Andren K, Wikkelso C, Tisell M et al. Natural course of idiopathic normal pressure hydrocephalus. Journal of Neurology, Neurosurgery & Psychiatry 2014; 85: 806-810
- 94 Agostini V, Lanotte M, Carlone M et al. Instrumented Gait Analysis for an Objective Pre-/Postassessment of Tap Test in Normal Pressure Hydrocephalus. Archives of Physical Medicine & Rehabilitation 2015; 96: 1235-1241
- 95 Aoyama Y, Kinoshita Y, Yokota A et al. Gait analysis of idiopathic normal pressure hydrocephalus. Journal of UOEH, University of Occupational & Environmental Health 2002; 24: 37-44
- 96 Stolze H, Drucke H, Kuhtz-Buschbeck J et al. Gait analysis in normal pressure hydrocephalus: which parameters respond to the CSF-tap test. Electroencephalography & Clinical Neurophysiology 2000; 111: 1678-1686
- 97 Schniepp R, Trabold R, Romagna A et al. Walking assessment after lumbar puncture in normal-pressure hydrocephalus: a delayed improvement over 3 days. Journal of Neurosurgery 2016; 18: 1-10
- 98 Damasceno BP, Carelli EF, Honorato DC et al. The predictive value of cerebrospinal fluid tap-test in normal pressure hydrocephalus. Arq Neuropsiquiatr 1997; 55: 179-185
- 99 Coelho FG, Andrade LP, Pedroso RV et al. Multimodal exercise intervention improves frontal cognitive functions and gait in Alzheimer's disease: a controlled trial. Geriatr Gerontol Int 2013; 13: 198-203
- 100 Colcombe S, Kramer AF. Fitness effects on the cognitive function of older adults a meta-analytic study. Psychological science 2003; 14: 125-130
- 101 Wolf SL, O'Grady M, Easley KA et al. The influence of intense Tai Chi training on physical performance and hemodynamic outcomes in transitionally frail, older adults. Journals of Gerontology Series A, Biological Sciences & Medical Sciences 2006; 61: 184-189
- 102 Wolf SL, Barnhart HX, Ellison GL et al. The effect of Tai Chi Quan and computerized balance training on postural stability in older subjects. Atlanta FICSIT Group. Frailty and Injuries: Cooperative Studies on Intervention Techniques. Phys Ther 1997; 77: 371-381 ; discussion 382–374
- 103 Trombetti A, Hars M, Herrmann FR et al. Effect of music-based multitask training on gait, balance, and fall risk in elderly people: a randomized controlled trial. Arch Intern Med 2011; 171: 525-533
- 104 Boyarsky TL. Dalcroze eurhythmics: an approach to early training of the nervous system. Semin Neurol 1989; 9: 105-114