Semin Thromb Hemost 2023; 49(06): 580-591
DOI: 10.1055/s-0042-1757183
Review Article

Von Willebrand Factor Multimer Analysis and Classification: A Comprehensive Review and Updates

Abdulrahman Saadalla
1   Department of Pathology, University of Utah Health Sciences Center and ARUP Laboratories, Salt Lake City, Utah
,
Jansen Seheult
2   Division of Hematopathology, Special Coagulation Laboratory, Mayo Clinic, Rochester, Minnesota
,
Rajiv K. Pruthi
2   Division of Hematopathology, Special Coagulation Laboratory, Mayo Clinic, Rochester, Minnesota
,
Dong Chen
2   Division of Hematopathology, Special Coagulation Laboratory, Mayo Clinic, Rochester, Minnesota
› Author Affiliations

Abstract

Von Willebrand factor (VWF) is a multimeric glycoprotein with essential roles in primary hemostasis. Patients with von Willebrand disease (VWD), due to quantitative and/or qualitative defects of VWF usually experience mucocutaneous bleeding. Based on the laboratory results of VWF antigen, various VWF activities, factor VIII activity, and VWF multimer patterns, VWD can be categorized as type 1, 2, and 3 VWD. VWF multimer analysis by either manual or semi-automated electrophoresis and immunoblotting is a critical part of the laboratory testing to differentiate type 1, type 2 VWD, and subtypes of type 1 or 2 VWD. The multimer distribution patterns can also help to understand the underlying molecular mechanism of VWF synthesis, multimerization, and clearance defects in VWD. This review will cover VWF synthesis, multimerization, secretion, VWF multimer analysis, and VWF multimer interpretation of various types and subtypes of VWD.

Note

We dedicate this manuscript to Dr. William L. Nichols for his tremendous contribution to the patient care, education and research in hemostasis and thrombosis. Dr. Nichols died at the age of 81 on September 7th, 2022. It was always his desire to advance our understanding of hemostasis by careful clinical observation and precise laboratory testing, and share his knowledge via education and publication. As a physician, a scientist, a mentor, and a person with great generosity and warm heart and spirit, he is deeply missed.




Publication History

Article published online:
29 September 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Jaffe EA, Hoyer LW, Nachman RL. Synthesis of von Willebrand factor by cultured human endothelial cells. Proc Natl Acad Sci U S A 1974; 71 (05) 1906-1909
  • 2 Nachman RL, Jaffe EA, Miller C, Brown WT. Structural analysis of factor VIII antigen in von Willebrand disease. Proc Natl Acad Sci U S A 1980; 77 (11) 6832-6836
  • 3 Marti T, Rösselet SJ, Titani K, Walsh KA. Identification of disulfide-bridged substructures within human von Willebrand factor. Biochemistry 1987; 26 (25) 8099-8109
  • 4 Matsui T, Titani K, Mizuochi T. Structures of the asparagine-linked oligosaccharide chains of human von Willebrand factor. Occurrence of blood group A, B, and H(O) structures. J Biol Chem 1992; 267 (13) 8723-8731
  • 5 Ward S, O'Sullivan JM, O'Donnell JS. The biological significance of von Willebrand factor O-linked glycosylation. Semin Thromb Hemost 2021; 47 (07) 855-861
  • 6 McDonald NQ, Hendrickson WA. A structural superfamily of growth factors containing a cystine knot motif. Cell 1993; 73 (03) 421-424
  • 7 Schneppenheim R, Brassard J, Krey S. et al. Defective dimerization of von Willebrand factor subunits due to a Cys-> Arg mutation in type IID von Willebrand disease. Proc Natl Acad Sci U S A 1996; 93 (08) 3581-3586
  • 8 Rehemtulla A, Kaufman RJ. Preferred sequence requirements for cleavage of pro-von Willebrand factor by propeptide-processing enzymes. Blood 1992; 79 (09) 2349-2355
  • 9 Wagner DD, Olmsted JB, Marder VJ. Immunolocalization of von Willebrand protein in Weibel-Palade bodies of human endothelial cells. J Cell Biol 1982; 95 (01) 355-360
  • 10 Sporn LA, Marder VJ, Wagner DD. Inducible secretion of large, biologically potent von Willebrand factor multimers. Cell 1986; 46 (02) 185-190
  • 11 Weibel ER, Palade GE. New cytoplasmic components in arterial endothelia. J Cell Biol 1964; 23: 101-112
  • 12 Schillemans M, Karampini E, Kat M, Bierings R. Exocytosis of Weibel-Palade bodies: how to unpack a vascular emergency kit. J Thromb Haemost 2019; 17 (01) 6-18
  • 13 Bukkems LH, Heijdra JM, de Jager NCB. et al. Population pharmacokinetics of the von Willebrand factor-factor VIII interaction in patients with von Willebrand disease. Blood Adv 2021; 5 (05) 1513-1522
  • 14 Lenting PJ, Christophe OD, Denis CV. von Willebrand factor biosynthesis, secretion, and clearance: connecting the far ends. Blood 2015; 125 (13) 2019-2028
  • 15 Wagner DD, Fay PJ, Sporn LA, Sinha S, Lawrence SO, Marder VJ. Divergent fates of von Willebrand factor and its propolypeptide (von Willebrand antigen II) after secretion from endothelial cells. Proc Natl Acad Sci U S A 1987; 84 (07) 1955-1959
  • 16 Wagner DD. The Weibel-Palade body: the storage granule for von Willebrand factor and P-selectin. Thromb Haemost 1993; 70 (01) 105-110
  • 17 Weiss HJ, Turitto VT, Baumgartner HR. Effect of shear rate on platelet interaction with subendothelium in citrated and native blood. I. Shear rate-dependent decrease of adhesion in von Willebrand's disease and the Bernard-Soulier syndrome. J Lab Clin Med 1978; 92 (05) 750-764
  • 18 Siedlecki CA, Lestini BJ, Kottke-Marchant KK, Eppell SJ, Wilson DL, Marchant RE. Shear-dependent changes in the three-dimensional structure of human von Willebrand factor. Blood 1996; 88 (08) 2939-2950
  • 19 Kalafatis M, Takahashi Y, Girma JP, Meyer D. Localization of a collagen-interactive domain of human von Willebrand factor between amino acid residues Gly 911 and Glu 1,365. Blood 1987; 70 (05) 1577-1583
  • 20 Pareti FI, Niiya K, McPherson JM, Ruggeri ZM. Isolation and characterization of two domains of human von Willebrand factor that interact with fibrillar collagen types I and III. J Biol Chem 1987; 262 (28) 13835-13841
  • 21 Lankhof H, van Hoeij M, Schiphorst ME. et al. A3 domain is essential for interaction of von Willebrand factor with collagen type III. Thromb Haemost 1996; 75 (06) 950-958
  • 22 Fowler WE, Fretto LJ, Hamilton KK, Erickson HP, McKee PA. Substructure of human von Willebrand factor. J Clin Invest 1985; 76 (04) 1491-1500
  • 23 Fujimura Y, Titani K, Holland LZ. et al. von Willebrand factor. A reduced and alkylated 52/48-kDa fragment beginning at amino acid residue 449 contains the domain interacting with platelet glycoprotein Ib. J Biol Chem 1986; 261 (01) 381-385
  • 24 Savage B, Saldívar E, Ruggeri ZM. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 1996; 84 (02) 289-297
  • 25 Schneider SW, Nuschele S, Wixforth A. et al. Shear-induced unfolding triggers adhesion of von Willebrand factor fibers. Proc Natl Acad Sci U S A 2007; 104 (19) 7899-7903
  • 26 Fujimoto T, Ohara S, Hawiger J. Thrombin-induced exposure and prostacyclin inhibition of the receptor for factor VIII/von Willebrand factor on human platelets. J Clin Invest 1982; 69 (06) 1212-1222
  • 27 Plow EF, Pierschbacher MD, Ruoslahti E, Marguerie GA, Ginsberg MH. The effect of Arg-Gly-Asp-containing peptides on fibrinogen and von Willebrand factor binding to platelets. Proc Natl Acad Sci U S A 1985; 82 (23) 8057-8061
  • 28 Ruggeri ZM, Zimmerman TS. von Willebrand factor and von Willebrand disease. Blood 1987; 70 (04) 895-904
  • 29 Dong JF, Moake JL, Bernardo A. et al. ADAMTS-13 metalloprotease interacts with the endothelial cell-derived ultra-large von Willebrand factor. J Biol Chem 2003; 278 (32) 29633-29639
  • 30 Tsai HM, Lian EC. Antibodies to von Willebrand factor-cleaving protease in acute thrombotic thrombocytopenic purpura. N Engl J Med 1998; 339 (22) 1585-1594
  • 31 James PD, Connell NT, Ameer B. et al. ASH ISTH NHF WFH 2021 guidelines on the diagnosis of von Willebrand disease. Blood Adv 2021; 5 (01) 280-300
  • 32 Christopherson PA, Haberichter SL, Flood VH. et al; Zimmerman Program Investigators. Molecular pathogenesis and heterogeneity in type 3 VWD families in U.S. Zimmerman program. J Thromb Haemost 2022; 20 (07) 1576-1588
  • 33 Hommais A, Stépanian A, Fressinaud E. et al. Impaired dimerization of von Willebrand factor subunit due to mutation A2801D in the CK domain results in a recessive type 2A subtype IID von Willebrand disease. Thromb Haemost 2006; 95 (05) 776-781
  • 34 Englender T, Lattuada A, Mannucci PM, Sadler JE, Inbal A. Analysis of Arg834Gln and Val902Glu type 2A von Willebrand disease mutations: studies with recombinant von Willebrand factor and correlation with patient characteristics. Blood 1996; 87 (07) 2788-2794
  • 35 Gralnick HR, Williams SB, Shafer BC, Corash L. Factor VIII/von Willebrand factor binding to von Willebrand's disease platelets. Blood 1982; 60 (02) 328-332
  • 36 Cooney KA, Ginsburg D. Comparative analysis of type 2b von Willebrand disease mutations: implications for the mechanism of von Willebrand factor binding to platelets. Blood 1996; 87 (06) 2322-2328
  • 37 Hillery CA, Mancuso DJ, Evan Sadler J. et al. Type 2M von Willebrand disease: F606I and I662F mutations in the glycoprotein Ib binding domain selectively impair ristocetin- but not botrocetin-mediated binding of von Willebrand factor to platelets. Blood 1998; 91 (05) 1572-1581
  • 38 Stepanian A, Ribba AS, Lavergne JM. et al. A new mutation, S1285F, within the A1 loop of von Willebrand factor induces a conformational change in A1 loop with abnormal binding to platelet GPIb and botrocetin causing type 2M von Willebrand disease. Br J Haematol 2003; 120 (04) 643-651
  • 39 Larsen DM, Haberichter SL, Gill JC, Shapiro AD, Flood VH. Variability in platelet- and collagen-binding defects in type 2M von Willebrand disease. Haemophilia 2013; 19 (04) 590-594
  • 40 Gaucher C, Jorieux S, Mercier B, Oufkir D, Mazurier C. The “Normandy” variant of von Willebrand disease: characterization of a point mutation in the von Willebrand factor gene. Blood 1991; 77 (09) 1937-1941
  • 41 Dong X, Leksa NC, Chhabra ES. et al. The von Willebrand factor D'D3 assembly and structural principles for factor VIII binding and concatemer biogenesis. Blood 2019; 133 (14) 1523-1533
  • 42 Casonato A, Galletta E, Sarolo L, Daidone V. Type 2N von Willebrand disease: characterization and diagnostic difficulties. Haemophilia 2018; 24 (01) 134-140
  • 43 Jacquemin M. Factor VIII-von Willebrand factor binding defects in autosomal recessive von Willebrand disease type Normandy and in mild hemophilia A. New insights into factor VIII-von Willebrand factor interactions. Acta Haematol 2009; 121 (2-3): 102-105
  • 44 Moake JL, Byrnes JJ, Troll JH. et al. Effects of fresh-frozen plasma and its cryosupernatant fraction on von Willebrand factor multimeric forms in chronic relapsing thrombotic thrombocytopenic purpura. Blood 1985; 65 (05) 1232-1236
  • 45 Hoyer LW, Shainoff JR. Factor VIII-related protein circulates in normal human plasma as high molecular weight multimers. Blood 1980; 55 (06) 1056-1059
  • 46 Ruggeri ZM, Zimmerman TS. The complex multimeric composition of factor VIII/von Willebrand factor. Blood 1981; 57 (06) 1140-1143
  • 47 Pruthi RK, Daniels TM, Heit JA, Chen D, Owen WG, Nichols WL. Plasma von Willebrand factor multimer quantitative analysis by in-gel immunostaining and infrared fluorescent imaging. Thromb Res 2010; 126 (06) 543-549
  • 48 Zaleski A, Henriksen RA. Visualization of the multimeric structure of von Willebrand factor using a peroxidase-conjugated second antibody. J Lab Clin Med 1986; 107 (02) 172-175
  • 49 Schneppenheim R, Plendl H, Budde U. Luminography–an alternative assay for detection of von Willebrand factor multimers. Thromb Haemost 1988; 60 (02) 133-136
  • 50 Studt JD, Budde U, Schneppenheim R. et al. Quantification and facilitated comparison of von Willebrand factor multimer patterns by densitometry. Am J Clin Pathol 2001; 116 (04) 567-574
  • 51 Crist RA, Heikal NM, Rodgers GM, Grenache DG, Smock KJ. Evaluation of a new commercial method for von Willebrand factor multimeric analysis. Int J Lab Hematol 2018; 40 (05) 586-591
  • 52 Pikta M, Zemtsovskaja G, Bautista H. et al. Preclinical evaluation of a semi-automated and rapid commercial electrophoresis assay for von Willebrand factor multimers. J Clin Lab Anal 2018; 32 (06) e22416
  • 53 Oliver S, Vanniasinkam T, Mohammed S, Vong R, Favaloro EJ. Semi-automated von Willebrand factor multimer assay for von Willebrand disease: further validation, benefits and limitations. Int J Lab Hematol 2019; 41 (06) 762-771
  • 54 Engelbrecht M, Louw S, Wiggill T. Verification of a new semi-automated Von Willebrand factor multimers assay. Int J Lab Hematol 2022; 44 (03) e127-e131
  • 55 Favaloro EJ, Oliver S. Evaluation of a new commercial von Willebrand factor multimer assay. Haemophilia 2017; 23 (04) e373-e377
  • 56 Oliver S, Lau KKE, Chapman K, Favaloro EJ. Laboratory testing for Von Willebrand factor multimers. Methods Mol Biol 2017; 1646: 495-511
  • 57 Favaloro EJ, Oliver S, Mohammed S, Vong R. Comparative assessment of von Willebrand factor multimers vs activity for von Willebrand disease using modern contemporary methodologies. Haemophilia 2020; 26 (03) 503-512
  • 58 Vangenechten I, Gadisseur A. Improving diagnosis of von Willebrand disease: Reference ranges for von Willebrand factor multimer distribution. Res Pract Thromb Haemost 2020; 4 (06) 1024-1034
  • 59 Stockschlaeder M, Schneppenheim R, Budde U. Update on von Willebrand factor multimers: focus on high-molecular-weight multimers and their role in hemostasis. Blood Coagul Fibrinolysis 2014; 25 (03) 206-216
  • 60 Fischer BE, Thomas KB, Schlokat U, Dorner F. Triplet structure of human von Willebrand factor. Biochem J 1998; 331 (Pt 2): 483-488
  • 61 Ledford-Kraemer MR. Analysis of von Willebrand factor structure by multimer analysis. Am J Hematol 2010; 85 (07) 510-514
  • 62 Hoyer LW, Rizza CR, Tuddenham EG, Carta CA, Armitage H, Rotblat F. Von Willebrand factor multimer patterns in von Willebrand's disease. Br J Haematol 1983; 55 (03) 493-507
  • 63 Haberichter SL, Castaman G, Budde U. et al. Identification of type 1 von Willebrand disease patients with reduced von Willebrand factor survival by assay of the VWF propeptide in the European study: molecular and clinical markers for the diagnosis and management of type 1 VWD (MCMDM-1VWD). Blood 2008; 111 (10) 4979-4985
  • 64 Haberichter SL. VWF propeptide in defining VWD subtypes. Blood 2015; 125 (19) 2882-2883
  • 65 Doherty D, Lavin M, Byrne MB. et al. Enhanced VWF clearance in Low VWF pathogenesis - limitations of VWFpp/VWF:Ag ratio and clinical significance. Blood Adv 2023; 7 (03) 302-308
  • 66 Cumming A, Grundy P, Keeney S. et al; UK Haemophilia Centre Doctors' Organisation. An investigation of the von Willebrand factor genotype in UK patients diagnosed to have type 1 von Willebrand disease. Thromb Haemost 2006; 96 (05) 630-641
  • 67 Gézsi A, Budde U, Deák I. et al. Accelerated clearance alone explains ultra-large multimers in von Willebrand disease Vicenza. J Thromb Haemost 2010; 8 (06) 1273-1280
  • 68 Mannucci PM, Lombardi R, Castaman G. et al. von Willebrand disease “Vicenza” with larger-than-normal (supranormal) von Willebrand factor multimers. Blood 1988; 71 (01) 65-70
  • 69 Holmberg L, Dent JA, Schneppenheim R, Budde U, Ware J, Ruggeri ZM. von Willebrand factor mutation enhancing interaction with platelets in patients with normal multimeric structure. J Clin Invest 1993; 91 (05) 2169-2177
  • 70 Naqvi AAT, Alajmi MF, Rehman T, Hussain A, Hassan I. Effects of Pro1266Leu mutation on structure and function of glycoprotein Ib binding domain of von Willebrand factor. J Cell Biochem 2019; 120 (10) 17847-17857
  • 71 Weiss HJ, Sussman II. A new von Willebrand variant (type I, New York): increased ristocetin-induced platelet aggregation and plasma von Willebrand factor containing the full range of multimers. Blood 1986; 68 (01) 149-156
  • 72 Casonato A, Pontara E, Dannhauser D, Bertomoro A, Sartori MT, Girolami A. Type I Padua: a new variant of von Willebrand's disease. Br J Haematol 1992; 81 (04) 615-616
  • 73 Casonato A, Pontara E, Dannhäuser D, Bertomoro A, Sartori MT, Girolami A. A new variant of von Willebrand's disease (type I Padua): doublet-organized plasma von Willebrand factor oligomers in the presence of all size multimers. Haematologia (Budap) 1994; 26 (02) 97-109
  • 74 Casonato A, Daidone V, Galletta E, Bertomoro A. Type 2B von Willebrand disease with or without large multimers: a distinction of the two sides of the disorder is long overdue. PLoS One 2017; 12 (06) e0179566
  • 75 Mannucci PM, Lombardi R, Pareti FI, Solinas S, Mazzucconi MG, Mariani G. A variant of von Willebrand's disease characterized by recessive inheritance and missing triplet structure of von Willebrand factor multimers. Blood 1983; 62 (05) 1000-1005
  • 76 Brehm MA, Huck V, Aponte-Santamaría C. et al. von Willebrand disease type 2A phenotypes IIC, IID and IIE: a day in the life of shear-stressed mutant von Willebrand factor. Thromb Haemost 2014; 112 (01) 96-108
  • 77 Ruggeri ZM, Nilsson IM, Lombardi R, Holmberg L, Zimmerman TS. Aberrant multimeric structure of von Willebrand factor in a new variant of von Willebrand's disease (type IIC). J Clin Invest 1982; 70 (05) 1124-1127
  • 78 Mannucci PM, Lombardi R, Federici AB, Dent JA, Zimmerman TS, Ruggeri ZM. A new variant of type II von Willebrand disease with aberrant multimeric structure of plasma but not platelet von Willebrand factor (type IIF). Blood 1986; 68 (01) 269-274
  • 79 Gralnick HR, Williams SB, McKeown LP, Maisonneuve P, Jenneau C, Sultan Y. A variant of type II von Willebrand disease with an abnormal triplet structure and discordant effects of protease inhibitors on plasma and platelet von Willebrand factor structure. Am J Hematol 1987; 24 (03) 259-266
  • 80 Federici AB, Mannucci PM, Lombardi R. et al. Type II H von Willebrand disease: new structural abnormality of plasma and platelet von Willebrand factor in a patient with prolonged bleeding time and borderline levels of ristocetin cofactor activity. Am J Hematol 1989; 32 (04) 287-293
  • 81 Baronciani L, Federici AB, Punzo M. et al. Type 2A (IIH) von Willebrand disease is due to mutations that affect von Willebrand factor multimerization. J Thromb Haemost 2009; 7 (07) 1114-1122
  • 82 Castaman G, Rodeghiero F, Lattuada A, Mannucci PM. A new variant of von Willebrand disease (type II I) with a normal degree of proteolytic cleavage of von Willebrand factor. Thromb Res 1992; 65 (03) 343-351
  • 83 Rabinowitz I, Tuley EA, Mancuso DJ. et al. von Willebrand disease type B: a missense mutation selectively abolishes ristocetin-induced von Willebrand factor binding to platelet glycoprotein Ib. Proc Natl Acad Sci U S A 1992; 89 (20) 9846-9849
  • 84 Michiels JJ, Gadisseur A, Budde U. et al. Characterization, classification, and treatment of von Willebrand diseases: a critical appraisal of the literature and personal experiences. Semin Thromb Hemost 2005; 31 (05) 577-601
  • 85 James PD, Notley C, Hegadorn C. et al; Association of Hemophilia Clinic Directors of Canada. Challenges in defining type 2M von Willebrand disease: results from a Canadian cohort study. J Thromb Haemost 2007; 5 (09) 1914-1922
  • 86 Mazurier C, Dieval J, Jorieux S, Delobel J, Goudemand M. A new von Willebrand factor (vWF) defect in a patient with factor VIII (FVIII) deficiency but with normal levels and multimeric patterns of both plasma and platelet vWF. Characterization of abnormal vWF/FVIII interaction. Blood 1990; 75 (01) 20-26
  • 87 Mazurier C, Hilbert L. Type 2N von Willebrand disease. Curr Hematol Rep 2005; 4 (05) 350-358
  • 88 Lester WA, Guilliatt AM, Enayat MS, Rose P, Hill FG. The R2464C missense mutation in the von Willebrand factor gene causes a novel abnormality of multimer electrophoretic mobility and falls into the subgroup of type 2 von Willebrand disease ‘unclassified’. Thromb Haemost 2007; 97 (01) 159-160
  • 89 Eikenboom J, Hilbert L, Ribba AS. et al. Expression of 14 von Willebrand factor mutations identified in patients with type 1 von Willebrand disease from the MCMDM-1VWD study. J Thromb Haemost 2009; 7 (08) 1304-1312
  • 90 Federici AB, Rand JH, Bucciarelli P. et al; Subcommittee on von Willebrand Factor. Acquired von Willebrand syndrome: data from an international registry. Thromb Haemost 2000; 84 (02) 345-349
  • 91 Fabris F, Casonato A, Grazia del Ben M, De Marco L, Girolami A. Abnormalities of von Willebrand factor in myeloproliferative disease: a relationship with bleeding diathesis. Br J Haematol 1986; 63 (01) 75-83
  • 92 Tatewaki W, Takahashi H, Shibata A. Multimeric composition of plasma von Willebrand factor in chronic myeloproliferative disorders. Clin Lab Haematol 1988; 10 (04) 417-425
  • 93 Horiuchi H, Doman T, Kokame K, Saiki Y, Matsumoto M. Acquired von Willebrand syndrome associated with cardiovascular diseases. J Atheroscler Thromb 2019; 26 (04) 303-314
  • 94 Hansen PR, Hassager C. Aortic stenosis, von Willebrand factor, and bleeding. N Engl J Med 2003; 349 (18) 1773-1774 , author reply 1773–1774
  • 95 Blackshear JL, Wysokinska EM, Safford RE. et al. Shear stress-associated acquired von Willebrand syndrome in patients with mitral regurgitation. J Thromb Haemost 2014; 12 (12) 1966-1974
  • 96 Blackshear JL, Schaff HV, Ommen SR, Chen D, Nichols WL. Hypertrophic obstructive cardiomyopathy, bleeding history, and acquired von Willebrand syndrome: response to septal myectomy. Mayo Clin Proc 2011; 86 (03) 219-224
  • 97 Crow S, Chen D, Milano C. et al. Acquired von Willebrand syndrome in continuous-flow ventricular assist device recipients. Ann Thorac Surg 2010; 90 (04) 1263-1269 , discussion 1269
  • 98 Perutelli P, Lerzo F, Calza G, Cevasco M, Mori PG. Abnormalities of plasma von Willebrand factor multimeric structure induced by extracorporeal circulation. Haematologica 1999; 84 (03) 287-288
  • 99 Pasala S, Fiser RT, Stine KC, Swearingen CJ, Prodhan P. von Willebrand factor multimers in pediatric extracorporeal membrane oxygenation support. ASAIO J 2014; 60 (04) 419-423
  • 100 Blackshear JL, Wysokinska EM, Safford RE. et al. Indexes of von Willebrand factor as biomarkers of aortic stenosis severity (from the Biomarkers of Aortic Stenosis Severity [BASS] study). Am J Cardiol 2013; 111 (03) 374-381
  • 101 Austin CO, Chen D, Thomas CS. et al. Von Willebrand factor multimer quantitation for assessment of cardiac lesion severity and bleeding risk. Res Pract Thromb Haemost 2017; 2 (01) 155-161
  • 102 Fricke WA, Brinkhous KM, Garris JB, Roberts HR. Comparison of inhibitory and binding characteristics of an antibody causing acquired von Willebrand syndrome: an assay for von Willebrand factor binding by antibody. Blood 1985; 66 (03) 562-569
  • 103 Bonaventura A, Vecchié A, Dagna L. et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat Rev Immunol 2021; 21 (05) 319-329
  • 104 Gu SX, Tyagi T, Jain K. et al. Thrombocytopathy and endotheliopathy: crucial contributors to COVID-19 thromboinflammation. Nat Rev Cardiol 2021; 18 (03) 194-209
  • 105 Ward SE, Fogarty H, Karampini E. et al; Irish COVID-19 Vasculopathy Study (iCVS) investigators. ADAMTS13 regulation of VWF multimer distribution in severe COVID-19. J Thromb Haemost 2021; 19 (08) 1914-1921
  • 106 Mancini I, Baronciani L, Artoni A. et al. The ADAMTS13-von Willebrand factor axis in COVID-19 patients. J Thromb Haemost 2021; 19 (02) 513-521
  • 107 Pascreau T, Zia-Chahabi S, Zuber B, Tcherakian C, Farfour E, Vasse M. ADAMTS 13 deficiency is associated with abnormal distribution of von Willebrand factor multimers in patients with COVID-19. Thromb Res 2021; 204: 138-140