Subscribe to RSS
DOI: 10.1055/s-0042-1757562
Markers of Hereditary Thrombophilia with Unclear Significance
Abstract
Thrombophilia leads to an increased risk of venous thromboembolism. Widely accepted risk factors for thrombophilia comprise deficiencies of protein C, protein S, and antithrombin, as well as the factor V “Leiden” mutation, the prothrombin G20210A mutation, dysfibrinogenemia, and, albeit less conclusive, increased levels of factor VIII. Besides these established markers of thrombophilia, risk factors of unclear significance have been described in the literature. These inherited risk factors include deficiencies or loss-of-activity of the activity of ADAMTS13, heparin cofactor II, plasminogen, tissue factor pathway inhibitor (TFPI), thrombomodulin, protein Z (PZ), as well as PZ-dependent protease inhibitor. On the other hand, thrombophilia has been linked to the gain-of-activity, or elevated levels, of α2-antiplasmin, angiotensin-converting enzyme, coagulation factors IX (FIX) and XI (FXI), fibrinogen, homocysteine, lipoprotein(a), plasminogen activator inhibitor-1 (PAI-1), and thrombin-activatable fibrinolysis inhibitor (TAFI). With respect to the molecular interactions that may influence the thrombotic risk, more complex mechanisms have been described for endothelial protein C receptor (EPCR) and factor XIII (FXIII) Val34Leu. With focus on the risk for venous thrombosis, the present review aims to give an overview on the current knowledge on the significance of the aforementioned markers for thrombophilia screening. According to the current knowledge, there appears to be weak evidence for a potential impact of EPCR, FIX, FXI, FXIII Val34Leu, fibrinogen, homocysteine, PAI-1, PZ, TAFI, and TFPI on the thrombotic risk.
Zusammenfassung
Eine Thrombophilie führt zu einem erhöhten Risiko für venöse thromboembolische Ereignisse. Weithin anerkannte Risikofaktoren für eine Thrombophilie sind ein Mangel an Protein C, Protein S und Antithrombin, sowie die Faktor-V-“Leiden”-Mutation, die Prothrombin-G20210A-Mutation, eine Dysfibrinogenämie und, weniger eindeutig, erhöhte Faktor VIII-Aktivitäten. Neben diesen etablierten Markern sind in der Literatur auch Risikofaktoren von eher unklarem Stellenwert beschrieben. Zu diesen Risikofaktoren, bzw. Markern, gehören der Funktionsverlust (loss-of-activity), bzw. der Mangel, der Aktivität von ADAMTS13, Heparin-Cofaktor II (HCII), Plasminogen, Tissue Factor Pathway Inhibitor (TFPI), Thrombomodulin (TM), Protein Z (PZ) sowie des Protein Z-abhängigen Proteaseinhibitors (ZPI). Andererseits wurde eine Thrombophilie mit einem gain-of-activity, bzw. erhöhten Aktivitäten, von α2-Antiplasmin (a2-AP), Angiotensin-konvertierendem Enzym (ACE), den Gerinnungsfaktoren IX (FIX) und XI (FXI), Fibrinogen, Homocystein, Lipoprotein(a), Plasminogenaktivator-Inhibitor-1 (PAI-1) sowie dem Thrombin-aktivierbaren Fibrinolyse-Inhibitor (TAFI) in Verbindung gebracht. Im Hinblick auf die zugrundeliegenden molekularen Interaktionen, die einen Einfluss auf das Thromboserisiko haben könnten, stellen sich die Mechanismen für den endothelialen Protein-C-Rezeptor (EPCR) und den Faktor-XIII-(FXIII) Val34Leu komplexer dar. In der vorliegenden Arbeit soll ein Überblick über den aktuellen Wissensstand zur Bedeutung dieser Marker für das Thrombophilie-Screening bei Patienten mit venösen thromboembolischen Ereignissen gegeben werden. Hierbei zeigt sich nach derzeitigem Kenntnisstand eine schwache Evidenz für einen möglichen Einfluss von EPCR, F IX, F XI, F XIII Val34Leu, Fibrinogen, Homocystein, PAI-1, PZ, TAFI und TFPI auf das Thromboserisiko.
Publication History
Received: 06 June 2022
Accepted: 23 August 2022
Article published online:
22 December 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Klarin D, Lynch J, Aragam K. et al; VA Million Veteran Program. Genome-wide association study of peripheral artery disease in the Million Veteran Program. Nat Med 2019; 25 (08) 1274-1279
- 2 Chiasakul T, De Jesus E, Tong J. et al. Inherited thrombophilia and the risk of arterial ischemic stroke: a systematic review and meta-analysis. J Am Heart Assoc 2019; 8 (19) e012877
- 3 Mannucci PM, Franchini M. Classic thrombophilic gene variants. Thromb Haemost 2015; 114 (05) 885-889
- 4 Linnemann B, Hart C. Laboratory diagnostics in thrombophilia. Hamostaseologie 2019; 39 (01) 49-61
- 5 Simone B, De Stefano V, Leoncini E. et al. Risk of venous thromboembolism associated with single and combined effects of Factor V Leiden, prothrombin 20210A and methylenetetrahydrofolate reductase C677T: a meta-analysis involving over 11,000 cases and 21,000 controls. Eur J Epidemiol 2013; 28 (08) 621-647
- 6 Anderson Jr FA, Spencer FA. Risk factors for venous thromboembolism. Circulation 2003; 107 (23, Suppl 1): I9-I16
- 7 Law RHP, Abu-Ssaydeh D, Whisstock JC. New insights into the structure and function of the plasminogen/plasmin system. Curr Opin Struct Biol 2013; 23 (06) 836-841
- 8 Ismail AA, Shaker BT, Bajou K. The plasminogen-activator plasmin system in physiological and pathophysiological angiogenesis. Int J Mol Sci 2021; 23 (01) 337
- 9 Draxler DF, Sashindranath M, Medcalf RL. Plasmin: a modulator of immune function. Semin Thromb Hemost 2017; 43 (02) 143-153
- 10 van der Vorm LN, Remijn JA, de Laat B, Huskens D. Effects of plasmin on von Willebrand factor and platelets: a narrative review. TH Open 2018; 2 (02) e218-e228
- 11 Kwaan HC. The role of fibrinolytic system in health and disease. Int J Mol Sci 2022; 23 (09) 5262
- 12 Banbula A, Zimmerman TP, Novokhatny VV. Blood inhibitory capacity toward exogenous plasmin. Blood Coagul Fibrinolysis 2007; 18 (03) 241-246
- 13 Juhan-Vague I, Renucci JF, Grimaux M. et al. Thrombin-activatable fibrinolysis inhibitor antigen levels and cardiovascular risk factors. Arterioscler Thromb Vasc Biol 2000; 20 (09) 2156-2161
- 14 Lisman T, de Groot PG, Meijers JC, Rosendaal FR. Reduced plasma fibrinolytic potential is a risk factor for venous thrombosis. Blood 2005; 105 (03) 1102-1105
- 15 Meltzer ME, Lisman T, de Groot PG. et al. Venous thrombosis risk associated with plasma hypofibrinolysis is explained by elevated plasma levels of TAFI and PAI-1. Blood 2010; 116 (01) 113-121
- 16 Mingers AM, Heimburger N, Zeitler P, Kreth HW, Schuster V. Homozygous type I plasminogen deficiency. Semin Thromb Hemost 1997; 23 (03) 259-269
- 17 Schuster V, Hügle B, Tefs K. Plasminogen deficiency. J Thromb Haemost 2007; 5 (12) 2315-2322
- 18 Tsutsumi S, Saito T, Sakata T, Mlyata T, Ichinose A. Genetic diagnosis of dysplasminogenemia: detection of an Ala601-Thr mutation in 118 out of 125 families and identification of a new Asp676-Asn mutation. Thromb Haemost 1996; 76 (02) 135-138
- 19 Dawson SJ, Wiman B, Hamsten A, Green F, Humphries S, Henney AM. The two allele sequences of a common polymorphism in the promoter of the plasminogen activator inhibitor-1 (PAI-1) gene respond differently to interleukin-1 in HepG2 cells. J Biol Chem 1993; 268 (15) 10739-10745
- 20 Tsantes AE, Nikolopoulos GK, Bagos PG. et al. Association between the plasminogen activator inhibitor-1 4G/5G polymorphism and venous thrombosis. A meta-analysis. Thromb Haemost 2007; 97 (06) 907-913
- 21 Nikolopoulos GK, Bagos PG, Tsangaris I. et al. The association between plasminogen activator inhibitor type 1 (PAI-1) levels, PAI-1 4G/5G polymorphism, and myocardial infarction: a Mendelian randomization meta-analysis. Clin Chem Lab Med 2014; 52 (07) 937-950
- 22 Tsantes AE, Nikolopoulos GK, Bagos PG. et al. Plasminogen activator inhibitor-1 4G/5G polymorphism and risk of ischemic stroke: a meta-analysis. Blood Coagul Fibrinolysis 2007; 18 (05) 497-504
- 23 Mellbring G, Dahlgren S, Reiz S, Wiman B. Fibrinolytic activity in plasma and deep vein thrombosis after major abdominal surgery. Thromb Res 1983; 32 (06) 575-584
- 24 Páramo JA, Alfaro MJ, Rocha E. Postoperative changes in the plasmatic levels of tissue-type plasminogen activator and its fast-acting inhibitor–relationship to deep vein thrombosis and influence of prophylaxis. Thromb Haemost 1985; 54 (03) 713-716
- 25 Booth NA. Fibrinolysis and thrombosis. Best Pract Res Clin Haematol 1999; 12 (03) 423-433
- 26 Sillen M, Declerck PJ. Thrombin activatable fibrinolysis inhibitor (TAFI): an updated narrative review. Int J Mol Sci 2021; 22 (07) 3670
- 27 van Tilburg NH, Rosendaal FR, Bertina RM. Thrombin activatable fibrinolysis inhibitor and the risk for deep vein thrombosis. Blood 2000; 95 (09) 2855-2859
- 28 Eichinger S, Schönauer V, Weltermann A. et al. Thrombin-activatable fibrinolysis inhibitor and the risk for recurrent venous thromboembolism. Blood 2004; 103 (10) 3773-3776
- 29 Folkeringa N, Coppens M, Veeger NJ. et al. Absolute risk of venous and arterial thromboembolism in thrombophilic families is not increased by high thrombin-activatable fibrinolysis inhibitor (TAFI) levels. Thromb Haemost 2008; 100 (01) 38-44
- 30 Boffa MB, Marar TT, Yeang C. et al. Potent reduction of plasma lipoprotein (a) with an antisense oligonucleotide in human subjects does not affect ex vivo fibrinolysis. J Lipid Res 2019; 60 (12) 2082-2089
- 31 Reyes-Soffer G, Ginsberg HN, Berglund L. et al; American Heart Association Council on Arteriosclerosis, Thrombosis and Vascular Biology; Council on Cardiovascular Radiology and Intervention; and Council on Peripheral Vascular Disease. Lipoprotein(a): a genetically determined, causal, and prevalent risk factor for atherosclerotic cardiovascular disease: a scientific statement from the American Heart Association. Arterioscler Thromb Vasc Biol 2022; 42 (01) e48-e60
- 32 Dentali F, Gessi V, Marcucci R, Gianni M, Grandi AM, Franchini M. Lipoprotein(a) as a risk factor for venous thromboembolism: a systematic review and meta-analysis of the literature. Semin Thromb Hemost 2017; 43 (06) 614-620
- 33 Kunutsor SK, Mäkikallio TH, Kauhanen J, Voutilainen A, Laukkanen JA. Lipoprotein(a) is not associated with venous thromboembolism risk. Scand Cardiovasc J 2019; 53 (03) 125-132
- 34 Helgadottir A, Gretarsdottir S, Thorleifsson G. et al. Apolipoprotein(a) genetic sequence variants associated with systemic atherosclerosis and coronary atherosclerotic burden but not with venous thromboembolism. J Am Coll Cardiol 2012; 60 (08) 722-729
- 35 Kamstrup PR, Tybjærg-Hansen A, Nordestgaard BG. Genetic evidence that lipoprotein(a) associates with atherosclerotic stenosis rather than venous thrombosis. Arterioscler Thromb Vasc Biol 2012; 32 (07) 1732-1741
- 36 Marston NA, Gurmu Y, Melloni GEM. et al. The effect of PCSK9 (proprotein convertase subtilisin/kexin type 9) inhibition on the risk of venous thromboembolism. Circulation 2020; 141 (20) 1600-1607
- 37 Romiti GF, Corica B, Borgi M. et al. Inherited and acquired thrombophilia in adults with retinal vascular occlusion: a systematic review and meta-analysis. J Thromb Haemost 2020; 18 (12) 3249-3266
- 38 Ponto KA, Scharrer I, Binder H. et al. Hypertension and multiple cardiovascular risk factors increase the risk for retinal vein occlusions: results from the Gutenberg Retinal Vein Occlusion Study. J Hypertens 2019; 37 (07) 1372-1383
- 39 Paciullo F, Giannandrea D, Virgili G, Cagini C, Gresele P. Role of increased lipoprotein (a) in retinal vein occlusion: a systematic review and meta-analysis. TH Open 2021; 5 (03) e295-e302
- 40 Kamphuisen PW, Eikenboom JCJ, Bertina RM. Elevated factor VIII levels and the risk of thrombosis. Arterioscler Thromb Vasc Biol 2001; 21 (05) 731-738
- 41 Kyrle PA, Minar E, Hirschl M. et al. High plasma levels of factor VIII and the risk of recurrent venous thromboembolism. N Engl J Med 2000; 343 (07) 457-462
- 42 Zambelli R, Nemeth B, Touw CE, Rosendaal FR, Rezende SM, Cannegieter SC. High risk of venous thromboembolism after orthopedic surgery in patients with thrombophilia. J Thromb Haemost 2021; 19 (02) 444-451
- 43 Tripodi A, Chantarangkul V, Martinelli I, Bucciarelli P, Mannucci PM. A shortened activated partial thromboplastin time is associated with the risk of venous thromboembolism. Blood 2004; 104 (12) 3631-3634
- 44 Meijers JCM, Tekelenburg WLH, Bouma BN, Bertina RM, Rosendaal FR. High levels of coagulation factor XI as a risk factor for venous thrombosis. N Engl J Med 2000; 342 (10) 696-701
- 45 Cushman M, O'Meara ES, Folsom AR, Heckbert SR. Coagulation factors IX through XIII and the risk of future venous thrombosis: the longitudinal investigation of thromboembolism etiology. Blood 2009; 114 (14) 2878-2883
- 46 Folsom AR, Tang W, Roetker NS, Heckbert SR, Cushman M, Pankow JS. Prospective study of circulating factor XI and incident venous thromboembolism: the longitudinal investigation of thromboembolism etiology (LITE). Am J Hematol 2015; 90 (11) 1047-1051
- 47 Libourel EJ, Bank I, Meinardi JR. et al. Co-segregation of thrombophilic disorders in factor V Leiden carriers; the contributions of factor VIII, factor XI, thrombin activatable fibrinolysis inhibitor and lipoprotein(a) to the absolute risk of venous thromboembolism. Haematologica 2002; 87 (10) 1068-1073
- 48 Bruzelius M, Ljungqvist M, Bottai M. et al. F11 is associated with recurrent VTE in women. A prospective cohort study. Thromb Haemost 2016; 115 (02) 406-414
- 49 Manco L, Silva C, Fidalgo T, Martinho P, Sarmento AB, Ribeiro ML. Venous thromboembolism risk associated with ABO, F11 and FGG loci. Blood Coagul Fibrinolysis 2018; 29 (06) 528-532
- 50 van Hylckama Vlieg A, van der Linden IK, Bertina RM, Rosendaal FR. High levels of factor IX increase the risk of venous thrombosis. Blood 2000; 95 (12) 3678-3682
- 51 Koster T, Rosendaal FR, Reitsma PH, van der Velden PA, Briët E, Vandenbroucke JP. Factor VII and fibrinogen levels as risk factors for venous thrombosis. A case-control study of plasma levels and DNA polymorphisms – the Leiden Thrombophilia Study (LETS). Thromb Haemost 1994; 71 (06) 719-722
- 52 Kamphuisen PW, Eikenboom JCJ, Vos HL. et al. Increased levels of factor VIII and fibrinogen in patients with venous thrombosis are not caused by acute phase reactions. Thromb Haemost 1999; 81 (05) 680-683
- 53 van Hylckama Vlieg A, Rosendaal FR. High levels of fibrinogen are associated with the risk of deep venous thrombosis mainly in the elderly. J Thromb Haemost 2003; 1 (12) 2677-2678
- 54 Komanasin N, Catto AJ, Futers TS, van Hylckama Vlieg A, Rosendaal FR, Ariëns RAS. A novel polymorphism in the factor XIII B-subunit (His95Arg): relationship to subunit dissociation and venous thrombosis. J Thromb Haemost 2005; 3 (11) 2487-2496
- 55 Franco RF, Reitsma PH, Lourenço D. et al. Factor XIII Val34Leu is a genetic factor involved in the etiology of venous thrombosis. Thromb Haemost 1999; 81 (05) 676-679
- 56 Wells PS, Anderson JL, Rodger MA, Carson N, Grimwood RL, Doucette SP. The factor XIII Val34Leu polymorphism: is it protective against idiopathic venous thromboembolism?. Blood Coagul Fibrinolysis 2006; 17 (07) 533-538
- 57 Wells PS, Anderson JL, Scarvelis DK, Doucette SP, Gagnon F. Factor XIII Val34Leu variant is protective against venous thromboembolism: a HuGE review and meta-analysis. Am J Epidemiol 2006; 164 (02) 101-109
- 58 Ellery PER, Adams MJ. Tissue factor pathway inhibitor: then and now. Semin Thromb Hemost 2014; 40 (08) 881-886
- 59 Dahm A, Van Hylckama Vlieg A, Bendz B, Rosendaal F, Bertina RM, Sandset PM. Low levels of tissue factor pathway inhibitor (TFPI) increase the risk of venous thrombosis. Blood 2003; 101 (11) 4387-4392
- 60 Zakai NA, Lutsey PL, Folsom AR, Heckbert SR, Cushman M. Total tissue factor pathway inhibitor and venous thrombosis. The Longitudinal Investigation of Thromboembolism Etiology. Thromb Haemost 2010; 104 (02) 207-212
- 61 Hoke M, Kyrle PA, Minar E. et al. Tissue factor pathway inhibitor and the risk of recurrent venous thromboembolism. Thromb Haemost 2005; 94 (04) 787-790
- 62 Zhang Y, Pang A, Zhao L. et al. Association of TFPI polymorphisms rs8176592, rs10931292, and rs10153820 with venous thrombosis: a meta-analysis. Medicine (Baltimore) 2019; 98 (12) e14978
- 63 Okada M, Tominaga N, Honda G. et al. A case of thrombomodulin mutation causing defective thrombin binding with absence of protein C and TAFI activation. Blood Adv 2020; 4 (12) 2631-2639
- 64 Delvaeye M, Noris M, De Vriese A. et al. Thrombomodulin mutations in atypical hemolytic-uremic syndrome. N Engl J Med 2009; 361 (04) 345-357
- 65 Ohlin AK, Norlund L, Marlar RA. Thrombomodulin gene variations and thromboembolic disease. Thromb Haemost 1997; 78 (01) 396-400
- 66 Ireland H, Kunz G, Kyriakoulis K, Stubbs PJ, Lane DA. Thrombomodulin gene mutations associated with myocardial infarction. Circulation 1997; 96 (01) 15-18
- 67 Doggen CJ, Kunz G, Rosendaal FR. et al. A mutation in the thrombomodulin gene, 127G to A coding for Ala25Thr, and the risk of myocardial infarction in men. Thromb Haemost 1998; 80 (05) 743-748
- 68 Norlund L, Holm J, Zöller B, Ohlin AK. A common thrombomodulin amino acid dimorphism is associated with myocardial infarction. Thromb Haemost 1997; 77 (02) 248-251
- 69 Le Flem L, Picard V, Emmerich J. et al. Mutations in promoter region of thrombomodulin and venous thromboembolic disease. Arterioscler Thromb Vasc Biol 1999; 19 (04) 1098-1104
- 70 Heit JA, Petterson TM, Owen WG, Burke JP, DE Andrade M, Melton III LJ. Thrombomodulin gene polymorphisms or haplotypes as potential risk factors for venous thromboembolism: a population-based case-control study. J Thromb Haemost 2005; 3 (04) 710-717
- 71 Navarro S, Medina P, Bonet E. et al. Association of the thrombomodulin gene c.1418C>T polymorphism with thrombomodulin levels and with venous thrombosis risk. Arterioscler Thromb Vasc Biol 2013; 33 (06) 1435-1440
- 72 van der Velden PA, Krommenhoek-Van Es T, Allaart CF, Bertina RM, Reitsma PH. A frequent thrombomodulin amino acid dimorphism is not associated with thrombophilia. Thromb Haemost 1991; 65 (05) 511-513
- 73 Aleksic N, Folsom AR, Cushman M, Heckbert SR, Tsai MY, Wu KK. Prospective study of the A455V polymorphism in the thrombomodulin gene, plasma thrombomodulin, and incidence of venous thromboembolism: the LITE Study. J Thromb Haemost 2003; 1 (01) 88-94
- 74 Ahmad A, Sundquist K, Zöller B, Svensson PJ, Sundquist J, Memon AA. Thrombomodulin gene c.1418C>T polymorphism and risk of recurrent venous thromboembolism. J Thromb Thrombolysis 2016; 42 (01) 135-141
- 75 Stearns-Kurosawa DJ, Kurosawa S, Mollica JS, Ferrell GL, Esmon CT. The endothelial cell protein C receptor augments protein C activation by the thrombin-thrombomodulin complex. Proc Natl Acad Sci U S A 1996; 93 (19) 10212-10216
- 76 Kurosawa S, Stearns-Kurosawa DJ, Hidari N, Esmon CT. Identification of functional endothelial protein C receptor in human plasma. J Clin Invest 1997; 100 (02) 411-418
- 77 Liaw PC, Neuenschwander PF, Smirnov MD, Esmon CT. Mechanisms by which soluble endothelial cell protein C receptor modulates protein C and activated protein C function. J Biol Chem 2000; 275 (08) 5447-5452
- 78 Biguzzi E, Merati G, Liaw PC. et al. A 23bp insertion in the endothelial protein C receptor (EPCR) gene impairs EPCR function. Thromb Haemost 2001; 86 (04) 945-948
- 79 von Depka M, Czwalinna A, Eisert R. et al. Prevalence of a 23bp insertion in exon 3 of the endothelial cell protein C receptor gene in venous thrombophilia. Thromb Haemost 2001; 86 (06) 1360-1362
- 80 Van de Water NS, French JK, McDowell J, Browett PJ. The endothelial protein C receptor (EPCR) 23bp insert in patients with myocardial infarction. Thromb Haemost 2001; 85 (04) 749-751
- 81 Eroĝlu A, Ulu A, Kurtman C, Cam R, Akar N. 23-bp endothelial protein C receptor (EPCR) gene insertion mutation in cancer patients with and without thrombosis. Am J Hematol 2006; 81 (03) 220
- 82 Medina P, Navarro S, Bonet E. et al. Functional analysis of two haplotypes of the human endothelial protein C receptor gene. Arterioscler Thromb Vasc Biol 2014; 34 (03) 684-690
- 83 Uitte de Willige S, Van Marion V, Rosendaal FR, Vos HL, de Visser MC, Bertina RM. Haplotypes of the EPCR gene, plasma sEPCR levels and the risk of deep venous thrombosis. J Thromb Haemost 2004; 2 (08) 1305-1310
- 84 Dennis J, Johnson CY, Adediran AS. et al. The endothelial protein C receptor (PROCR) Ser219Gly variant and risk of common thrombotic disorders: a HuGE review and meta-analysis of evidence from observational studies. Blood 2012; 119 (10) 2392-2400
- 85 Anastasiou G, Politou M, Rallidis L. et al. Endothelial protein C receptor gene variants and risk of thrombosis. Clin Appl Thromb Hemost 2016; 22 (02) 199-204
- 86 Plasín-Rodríguez MA, Rodríguez-Pintó I, Patricio P. et al. The H1 haplotype of the endothelial protein C receptor protects against arterial thrombosis in patients with antiphospholipid syndrome. Thromb Res 2018; 169: 128-134
- 87 Broze Jr GJ. Protein Z-dependent regulation of coagulation. Thromb Haemost 2001; 86 (01) 8-13
- 88 Huang X, Swanson R, Kroh HK, Bock PE. Protein Z-dependent protease inhibitor (ZPI) is a physiologically significant inhibitor of prothrombinase function. J Biol Chem 2019; 294 (19) 7644-7657
- 89 Bafunno V, Santacroce R, Margaglione M. The risk of occurrence of venous thrombosis: focus on protein Z. Thromb Res 2011; 128 (06) 508-515
- 90 Van de Water N, Tan T, Ashton F. et al. Mutations within the protein Z-dependent protease inhibitor gene are associated with venous thromboembolic disease: a new form of thrombophilia. Br J Haematol 2004; 127 (02) 190-194
- 91 Vasse M, Guegan-Massardier E, Borg JY, Woimant F, Soria C. Frequency of protein Z deficiency in patients with ischaemic stroke. Lancet 2001; 357 (9260): 933-934
- 92 Al-Shanqeeti A, van Hylckama Vlieg A, Berntorp E, Rosendaal FR, Broze Jr GJ. Protein Z and protein Z-dependent protease inhibitor. Determinants of levels and risk of venous thrombosis. Thromb Haemost 2005; 93 (03) 411-413
- 93 Sofi F, Cesari F, Abbate R, Gensini GF, Broze Jr G, Fedi S. A meta-analysis of potential risks of low levels of protein Z for diseases related to vascular thrombosis. Thromb Haemost 2010; 103 (04) 749-756
- 94 Kemkes-Matthes B, Nees M, Kühnel G, Matzdorff A, Matthes KJ. Protein Z influences the prothrombotic phenotype in factor V Leiden patients. Thromb Res 2002; 106 (4-5): 183-185
- 95 Martinelli I, Razzari C, Biguzzi E, Bucciarelli P, Mannucci PM. Low levels of protein Z and the risk of venous thromboembolism. J Thromb Haemost 2005; 3 (12) 2817-2819
- 96 Corral J, González-Conejero R, Soria JM. et al. A nonsense polymorphism in the protein Z-dependent protease inhibitor increases the risk for venous thrombosis. Blood 2006; 108 (01) 177-183
- 97 Dentali F, Gianni M, Lussana F, Squizzato A, Cattaneo M, Ageno W. Polymorphisms of the Z protein protease inhibitor and risk of venous thromboembolism: a meta-analysis. Br J Haematol 2008; 143 (02) 284-287
- 98 Young LK, Birch NP, Browett PJ. et al. Two missense mutations identified in venous thrombosis patients impair the inhibitory function of the protein Z dependent protease inhibitor. Thromb Haemost 2012; 107 (05) 854-863
- 99 Gorski MM, Lotta LA, Pappalardo E. et al. Single nucleotide variant rs2232710 in the protein Z-dependent protease inhibitor (ZPI, SERPINA10) gene is not associated with deep vein thrombosis. PLoS One 2016; 11 (03) e0151347
- 100 Briginshaw GF, Shanberge JN. Identification of two distinct heparin cofactors in human plasma. Separation and partial purification. Arch Biochem Biophys 1974; 161 (02) 683-690
- 101 Lopaciuk S, Bykowska K, Kopeć M. Prevalence of heparin cofactor II deficiency in patients with a history of venous thrombosis. Pol J Pharmacol 1996; 48 (01) 109-111
- 102 Weisdorf DJ, Edson JR. Recurrent venous thrombosis associated with inherited deficiency of heparin cofactor II. Br J Haematol 1991; 77 (01) 125-126
- 103 Bertina RM, van der Linden IK, Engesser L, Muller HP, Brommer EJ. Hereditary heparin cofactor II deficiency and the risk of development of thrombosis. Thromb Haemost 1987; 57 (02) 196-200
- 104 Villa P, Aznar J, Vaya A. et al. Hereditary homozygous heparin cofactor II deficiency and the risk of developing venous thrombosis. Thromb Haemost 1999; 82 (03) 1011-1014
- 105 Tollefsen DM. Heparin cofactor II deficiency. Arch Pathol Lab Med 2002; 126 (11) 1394-1400
- 106 Corral J, Aznar J, Gonzalez-Conejero R. et al. Homozygous deficiency of heparin cofactor II: relevance of P17 glutamate residue in serpins, relationship with conformational diseases, and role in thrombosis. Circulation 2004; 110 (10) 1303-1307
- 107 Finkelstein JD, Martin JJ. Homocysteine. Int J Biochem Cell Biol 2000; 32 (04) 385-389
- 108 Holmes MV, Newcombe P, Hubacek JA. et al. Effect modification by population dietary folate on the association between MTHFR genotype, homocysteine, and stroke risk: a meta-analysis of genetic studies and randomised trials. Lancet 2011; 378 (9791): 584-594
- 109 Den Heijer M, Lewington S, Clarke R. Homocysteine, MTHFR and risk of venous thrombosis: a meta-analysis of published epidemiological studies. J Thromb Haemost 2005; 3 (02) 292-299
- 110 Gao M, Feng N, Zhang M, Ti X, Zuo X. Meta-analysis of the relationship between methylenetetrahydrofolate reductase C677T and A1298C polymorphism and venous thromboembolism in the Caucasian and Asian. Biosci Rep 2020; 40 (07) 40
- 111 Revuelta JL, Serrano-Amatriain C, Ledesma-Amaro R, Jiménez A. Formation of folates by microorganisms: towards the biotechnological production of this vitamin. Appl Microbiol Biotechnol 2018; 102 (20) 8613-8620
- 112 D'Angelo A, Selhub J. Homocysteine and thrombotic disease. Blood 1997; 90 (01) 1-11
- 113 Ray JG. Meta-analysis of hyperhomocysteinemia as a risk factor for venous thromboembolic disease. Arch Intern Med 1998; 158 (19) 2101-2106
- 114 Langman LJ, Ray JG, Evrovski J, Yeo E, Cole DEC. Hyperhomocyst(e)inemia and the increased risk of venous thromboembolism: more evidence from a case-control study. Arch Intern Med 2000; 160 (07) 961-964
- 115 Božič M, Stegnar M, Fermo I. et al. Mild hyperhomocysteinemia and fibrinolytic factors in patients with history of venous thromboembolism. Thromb Res 2000; 100 (04) 271-278
- 116 Kosch A, Koch HG, Heinecke A, Kurnik K, Heller C, Nowak-Göttl U. Childhood Thrombophilia Study Group. Increased fasting total homocysteine plasma levels as a risk factor for thromboembolism in children. Thromb Haemost 2004; 91 (02) 308-314
- 117 Martí-Carvajal AJ, Solà I, Lathyris D, Salanti G. Homocysteine lowering interventions for preventing cardiovascular events. Cochrane Database Syst Rev 2009; (04) CD006612
- 118 Bernstein KE, Giani JF, Shen XZ, Gonzalez-Villalobos RA. Renal angiotensin-converting enzyme and blood pressure control. Curr Opin Nephrol Hypertens 2014; 23 (02) 106-112
- 119 Brown NJ, Vaughan DE. Prothrombotic effects of angiotensin. Adv Intern Med 2000; 45: 419-429
- 120 Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 1990; 86 (04) 1343-1346
- 121 Hsiao F-C, Hsu L-A. Meta-analysis of association between insertion/deletion polymorphism of the angiotensin I-converting enzyme gene and venous thromboembolism. Clin Appl Thromb Hemost 2011; 17 (01) 51-57
- 122 Chae YK, Khemasuwan D, Dimou A. et al. Inhibition of renin angiotensin axis may be associated with reduced risk of developing venous thromboembolism in patients with atherosclerotic disease. PLoS One 2014; 9 (01) e87813-e87813
- 123 Suo Y, Zhang Y, Wang Y. et al. Renin-angiotensin system inhibition is associated with reduced risk of left atrial appendage thrombosis formation in patients with atrial fibrillation. Cardiol J 2018; 25 (05) 611-620
- 124 Mahley RW. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 1988; 240 (4852): 622-630
- 125 Cattin L, Fisicaro M, Tonizzo M. et al. Polymorphism of the apolipoprotein E gene and early carotid atherosclerosis defined by ultrasonography in asymptomatic adults. Arterioscler Thromb Vasc Biol 1997; 17 (01) 91-94
- 126 Eichner JE, Dunn ST, Perveen G, Thompson DM, Stewart KE, Stroehla BC. Apolipoprotein E polymorphism and cardiovascular disease: a HuGE review. Am J Epidemiol 2002; 155 (06) 487-495
- 127 Qiao SY, Shang K, Chu YH. et al. Apolipoprotein E ε4 polymorphism as a risk factor for ischemic stroke: a systematic review and meta-analysis. Dis Markers 2022; 2022: 1407183
- 128 Nagato LC, de Souza Pinhel MA, de Godoy JM, Souza DR. Association of ApoE genetic polymorphisms with proximal deep venous thrombosis. J Thromb Thrombolysis 2012; 33 (01) 116-119
- 129 Katrancioglu N, Manduz S, Ozen F. et al. Association between ApoE4 allele and deep venous thrombosis: a pilot study. Clin Appl Thromb Hemost 2011; 17 (02) 225-228
- 130 Zhu S, Wang Z, Wu X, Shu Y, Lu D. Apolipoprotein E polymorphism is associated with lower extremity deep venous thrombosis: color-flow Doppler ultrasound evaluation. Lipids Health Dis 2014; 13: 21
- 131 Rastogi P, Kumar N, Ahluwalia J. et al. Thrombophilic risk factors are laterally associated with apolipoprotein E gene polymorphisms in deep vein thrombosis patients: an Indian study. Phlebology 2019; 34 (05) 324-335
- 132 South K, Lane DA. ADAMTS-13 and von Willebrand factor: a dynamic duo. J Thromb Haemost 2018; 16 (01) 6-18
- 133 Joly BS, Coppo P, Veyradier A. Thrombotic thrombocytopenic purpura. Blood 2017; 129 (21) 2836-2846
- 134 Bittar LF, de Paula EV, Mello TB, Siqueira LH, Orsi FL, Annichino-Bizzacchi JM. Polymorphisms and mutations in vWF and ADAMTS13 genes and their correlation with plasma levels of FVIII and vWF in patients with deep venous thrombosis. Clin Appl Thromb Hemost 2011; 17 (05) 514-518
- 135 Pagliari MT, Boscarino M, Cairo A. et al. ADAMTS13 activity, high VWF and FVIII levels in the pathogenesis of deep vein thrombosis. Thromb Res 2021; 197: 132-137
- 136 Lotta LA, Tuana G, Yu J. et al. Next-generation sequencing study finds an excess of rare, coding single-nucleotide variants of ADAMTS13 in patients with deep vein thrombosis. J Thromb Haemost 2013; 11 (07) 1228-1239
- 137 Pagliari MT, Cairo A, Boscarino M. et al. Role of ADAMTS13, VWF and F8 genes in deep vein thrombosis. PLoS One 2021; 16 (10) e0258675
- 138 Connors JM. Thrombophilia testing and venous thrombosis. N Engl J Med 2017; 377 (12) 1177-1187
- 139 Mazzolai L, Duchosal MA. Hereditary thrombophilia and venous thromboembolism: critical evaluation of the clinical implications of screening. Eur J Vasc Endovasc Surg 2007; 34 (04) 483-488
- 140 Lowe G. Factor IX and deep vein thrombosis. Haematologica 2009; 94 (05) 615-617