Rofo 2017; 189(09): 828-843
DOI: 10.1055/s-0043-109010
Review
© Georg Thieme Verlag KG Stuttgart · New York

Thermal Ablation of Lung Tumors: Focus on Microwave Ablation

Thermoablation von Lungentumoren: Mikrowellenablation im Fokus
Thomas J. Vogl
1   Institute for Diagnostic and Interventional Radiology, Goethe-Universitat Frankfurt am Main, Germany
,
Nour-Eldin A. Nour-Eldin
1   Institute for Diagnostic and Interventional Radiology, Goethe-Universitat Frankfurt am Main, Germany
,
Moritz Hans Albrecht
1   Institute for Diagnostic and Interventional Radiology, Goethe-Universitat Frankfurt am Main, Germany
,
Benjamin Kaltenbach
1   Institute for Diagnostic and Interventional Radiology, Goethe-Universitat Frankfurt am Main, Germany
,
Wolfgang Hohenforst-Schmidt
2   Medical Clinic I, “Fuerth’’ Hospital, Friedrich-Alexander-University Erlangen-Nurnberg, Fuerth, Germany
,
Han Lin
3   Department of Radiology and Radiological Sciences, Medical University of South Carolina, Charleston, United States
,
Bita Panahi
1   Institute for Diagnostic and Interventional Radiology, Goethe-Universitat Frankfurt am Main, Germany
,
Kathrin Eichler
1   Institute for Diagnostic and Interventional Radiology, Goethe-Universitat Frankfurt am Main, Germany
,
Tatjana Gruber-Rouh
1   Institute for Diagnostic and Interventional Radiology, Goethe-Universitat Frankfurt am Main, Germany
,
Andrei Roman
1   Institute for Diagnostic and Interventional Radiology, Goethe-Universitat Frankfurt am Main, Germany
4   Department of Radiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
› Author Affiliations
Further Information

Publication History

09 January 2017

27 March 2017

Publication Date:
16 May 2017 (online)

Abstract

Background Image-guided thermal ablation can be used for the treatment of medically inoperable primary and metastatic lung cancer. These techniques are based on the heating up or freezing (cryoablation) of a volume of tissue around a percutaneous applicator that induces necrosis of the tumor.

Method The English-language literature concerning thermal ablation of the lung was reviewed. Radiofrequency ablation (RFA) is the most widely performed and investigated of these techniques. Microwave ablation (MWA) represents a relatively new alternative that shares the same indications and is conducted in a very similar fashion as RFA. It has been experimentally and clinically shown that MWA produces larger, more spherical ablation zones over shorter periods of time compared to RFA. Seven different MWA systems are available in Europe and the USA with significant differences in the size and shape of the produced ablation zones.

Results The types of complications caused by MWA and their rates of occurrence are very similar to those caused by RFA. The local progression rates after MWA of lung malignancies vary between 0 % and 34 % and are similar to those in the RFA literature.

Conclusion Despite technical improvements, the current generation of MWA systems has comparable clinical outcomes to those of RFA.

Key Points

  • MWA is a safe technique that should be considered one of the treatment options for medically inoperable lung tumors

  • As thermal ablations of lung tumors are becoming more frequent, radiologists should be acquainted with the post-ablation imaging characteristics

  • Although MWA has some theoretical advantages over RFA, the clinical outcomes are similar

Citation Format

  • Vogl TJ, Nour-Eldin NA, Albrecht MH et al. Thermal Ablation of Lung Tumors: Focus on Microwave Ablation. Fortschr Röntgenstr 2017; 189: 828 – 843

Zusammenfassung

Hintergrund Bild-gesteuerte thermische Ablationen können zur Behandlung von inoperablem primärem und metastatischem Lungenkrebs eingesetzt werden. Diese Techniken basieren auf der Erwärmung oder Abkühlung (Kryotherapie) eines Gewebevolumens um einen perkutanen Applikator, der eine Nekrose des Tumors induziert.

Methode Die englischsprachige Literatur betreffend Thermalablation der Lunge wurde durchgesehen. Die Radiofrequenz-Ablation (RFA) ist das am weitesten verbreitete und erforschte Verfahren dieser Ablationstechniken. Die Mikrowellenablation (MWA) stellt eine relativ neue Alternative dar, die unter gleichen Indikationen und in ähnlicher Weise wie die RFA durchgeführt wird. Es wurde experimentell und klinisch gezeigt, dass mittels MWA größere und sphärischere Ablationszonen über kürzere Zeiträume im Vergleich zu RFA erreicht werden können. In Europa und den USA stehen sieben verschiedene MWA-Systeme zur Verfügung, die signifikante Unterschiede in Größe und Form der erzeugten Ablationszonen aufweisen.

Ergebnisse Die mit der MWA assoziierten Komplikationen, sowie deren Häufigkeiten, sind denen der RFA sehr ähnlich. Die lokalen Progressionsraten nach MWA von Lungentumoren variieren zwischen 0 % und 34 % die mit den Daten der RFA-Literatur vergleichbar sind.

Schlussfolgerung Trotz technischer Verbesserungen hat die aktuelle Generation von MWA-Systemen ähnliche klinische Ergebnisse wie die RFA.

Kernaussagen

  • Bei der MWA handelt es ich um ein sicheres Therapieverfahren welches daher als Behandlungsalternative bei nicht operablen Lungentumoren in Erwägung gezogen werden sollte.

  • Da die Thermoablation von Lungentumoren immer mehr Anwendung findet, sollten Radiologen mit dem Erscheinungsbild der Ablation in der Bildgebung vertraut sein.

  • Obwohl die MWA theoretische Vorteile gegenüber der RFA hat, ist der Therapieerfolg vergleichbar.

 
  • References

  • 1 Wolf FJ. Grand DJ. Machan JT. et al. Microwave Ablation of Lung Malignancies: Effectiveness, CT Findings, and Safety in 50 Patients. Radiology 2008; 247: 871-879
  • 2 Vogl TJ. Naguib NN. Gruber-Rouh T. et al. Microwave ablation therapy: clinical utility in treatment of pulmonary metastases. Radiology 2011; 261: 643-651
  • 3 Lu Q. Cao W. Huang L. et al. CT-guided percutaneous microwave ablation of pulmonary malignancies: Results in 69 cases. World journal of surgical oncology 2012; 10: 80
  • 4 Carrafiello G. Mangini M. Fontana F. et al. Complications of microwave and radiofrequency lung ablation: personal experience and review of the literature. La Radiologia medica 2012; 117: 201-213
  • 5 Wolf FJ. Aswad B. Ng T. et al. Intraoperative microwave ablation of pulmonary malignancies with tumor permittivity feedback control: ablation and resection study in 10 consecutive patients. Radiology 2012; 262: 353-360
  • 6 Vogl TJ. Worst TS. Naguib NN. et al. Factors influencing local tumor control in patients with neoplastic pulmonary nodules treated with microwave ablation: a risk-factor analysis. American journal of roentgenology 2013; 200: 665-672
  • 7 Alexander ES. Hankins CA. Machan JT. et al. Rib fractures after percutaneous radiofrequency and microwave ablation of lung tumors: incidence and relevance. Radiology 2013; 266: 971-978
  • 8 Belfiore G. Ronza F. Belfiore MP. et al. Patients' survival in lung malignancies treated by microwave ablation: our experience on 56 patients. European journal of radiology 2013; 82: 177-181
  • 9 Carrafiello G. Mangini M. Fontana F. et al. Microwave ablation of lung tumours: single-centre preliminary experience. La Radiologia medica 2014; 119: 75-82
  • 10 Liu H. Steinke K. High-powered percutaneous microwave ablation of stage I medically inoperable non-small cell lung cancer: a preliminary study. Journal of medical imaging and radiation oncology 2013; 57: 466-474
  • 11 Wei Z. Ye X. Yang X. et al. Microwave ablation in combination with chemotherapy for the treatment of advanced non-small cell lung cancer. Cardiovascular and interventional radiology 2015; 38: 135-142
  • 12 Yang X. Ye X. Zheng A. et al. Percutaneous microwave ablation of stage I medically inoperable non-small cell lung cancer: clinical evaluation of 47 cases. Journal of surgical oncology 2014; 110: 758-763
  • 13 Zheng A. Wang X. Yang X. et al. Major complications after lung microwave ablation: a single-center experience on 204 sessions. The Annals of thoracic surgery 2014; 98: 243-248
  • 14 Acksteiner C. Steinke K. Percutaneous microwave ablation for early-stage non-small cell lung cancer (NSCLC) in the elderly: a promising outlook. Journal of medical imaging and radiation oncology 2015; 59: 82-90
  • 15 Han X. Yang X. Ye X. et al. Computed tomography-guided percutaneous microwave ablation of patients 75 years of age and older with early-stage nonsmall cell lung cancer. Indian journal of cancer 2015; 52 (Suppl. 02) e56-e60
  • 16 Ni X. Han JQ. Ye X. et al. Percutaneous CT-guided microwave ablation as maintenance after first-line treatment for patients with advanced NSCLC. OncoTargets and therapy 2015; 8: 3227-3235
  • 17 Splatt AM. Steinke K. Major complications of high-energy microwave ablation for percutaneous CT-guided treatment of lung malignancies: Single-centre experience after 4 years. Journal of medical imaging and radiation oncology 2015; 59: 609-616
  • 18 Sun YH. Song PY. Guo Y. et al. Computed tomography-guided percutaneous microwave ablation therapy for lung cancer. Genetics and molecular research: GMR 2015; 14: 4858-4864
  • 19 Wei Z. Ye X. Yang X. et al. Microwave ablation plus chemotherapy improved progression-free survival of advanced non-small cell lung cancer compared to chemotherapy alone. Medical oncology (Northwood, London, England) 2015; 32: 464
  • 20 Xu X. Ye X. Liu G. et al. Targeted percutaneous microwave ablation at the pulmonary lesion combined with mediastinal radiotherapy with or without concurrent chemotherapy in locally advanced non-small cell lung cancer evaluation in a randomized comparison study. Medical oncology (Northwood, London, England) 2015; 32: 227
  • 21 Cheng M. Fay M. Steinke K. Percutaneous CT-guided thermal ablation as salvage therapy for recurrent non-small cell lung cancer after external beam radiotherapy: A retrospective study. International journal of hyperthermia: the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group 2016; 32: 316-323
  • 22 Egashira Y. Singh S. Bandula S. et al. Percutaneous High-Energy Microwave Ablation for the Treatment of Pulmonary Tumors: A Retrospective Single-Center Experience. Journal of vascular and interventional radiology: JVIR 2016; 27: 474-479
  • 23 Lubner MG. Brace CL. Hinshaw JL. et al. Microwave tumor ablation: mechanism of action, clinical results, and devices. Journal of vascular and interventional radiology: JVIR 2010; 21: S192-S203
  • 24 Ward RC. Healey TT. Dupuy DE. Microwave ablation devices for interventional oncology. Expert review of medical devices 2013; 10: 225-238
  • 25 Simo KA. Tsirline VB. Sindram D. et al. Microwave ablation using 915-MHz and 2.45-GHz systems: what are the differences?. HPB: the official journal of the International Hepato Pancreato Biliary Association 2013; 15: 991-996
  • 26 Goldberg SN. Radiofrequency tumor ablation: principles and techniques. European journal of ultrasound: official journal of the European Federation of Societies for Ultrasound in Medicine and Biology 2001; 13: 129-147
  • 27 Vogl TJ. Naguib NN. Lehnert T. et al. Radiofrequency, microwave and laser ablation of pulmonary neoplasms: clinical studies and technical considerations--review article. European journal of radiology 2011; 77: 346-357
  • 28 Hinshaw JL. Lubner MG. Ziemlewicz TJ. et al. Percutaneous tumor ablation tools: microwave, radiofrequency, or cryoablation--what should you use and why?. Radiographics: a review publication of the Radiological Society of North America, Inc 2014; 34: 1344-1362
  • 29 Koizumi T. Tsushima K. Tanabe T. et al. Bronchoscopy-Guided Cooled Radiofrequency Ablation as a Novel Intervention Therapy for Peripheral Lung Cancer. Respiration; international review of thoracic diseases 2015; 90: 47-55
  • 30 Alexander ES. Dupuy DE. Lung cancer ablation: technologies and techniques. Seminars in interventional radiology 2013; 30: 141-150
  • 31 McDevitt JL. Mouli SK. Nemcek AA. et al. Percutaneous Cryoablation for the Treatment of Primary and Metastatic Lung Tumors: Identification of Risk Factors for Recurrence and Major Complications. Journal of vascular and interventional radiology: JVIR 2016; 27: 1371-1379
  • 32 Savic LJ. Chapiro J. Hamm B. et al. Irreversible Electroporation in Interventional Oncology: Where We Stand and Where We Go. RoFo: Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin 2016; 188: 735-745
  • 33 Brace CL. Hinshaw JL. Laeseke PF. et al. Pulmonary thermal ablation: comparison of radiofrequency and microwave devices by using gross pathologic and CT findings in a swine model. Radiology 2009; 251: 705-711
  • 34 Andreano A. Huang Y. Meloni MF. et al. Microwaves create larger ablations than radiofrequency when controlled for power in ex vivo tissue. Medical physics 2010; 37: 2967-2973
  • 35 Steinke K. Haghighi KS. Wulf S. et al. Effect of vessel diameter on the creation of ovine lung radiofrequency lesions in vivo: preliminary results. The Journal of surgical research 2005; 124: 85-91
  • 36 Gillams AR. Lees WR. Radiofrequency ablation of lung metastases: factors influencing success. European radiology 2008; 18: 672-677
  • 37 Planche O. Teriitehau C. Boudabous S. et al. In vivo evaluation of lung microwave ablation in a porcine tumor mimic model. Cardiovascular and interventional radiology 2013; 36: 221-228
  • 38 Crocetti L. Bozzi E. Faviana P. et al. Thermal ablation of lung tissue: in vivo experimental comparison of microwave and radiofrequency. Cardiovascular and interventional radiology 2010; 33: 818-827
  • 39 Alonzo M. Bos A. Bennett S. et al. The Emprint Ablation System with Thermosphere Technology: One of the Newer Next-Generation Microwave Ablation Technologies. Seminars in interventional radiology 2015; 32: 335-338
  • 40 Hoffmann R. Rempp H. Erhard L. et al. Comparison of four microwave ablation devices: an experimental study in ex vivo bovine liver. Radiology 2013; 268: 89-97
  • 41 Patel IJ. Davidson JC. Nikolic B. et al. Consensus guidelines for periprocedural management of coagulation status and hemostasis risk in percutaneous image-guided interventions. Journal of vascular and interventional radiology: JVIR 2012; 23: 727-736
  • 42 Hoffmann RT. Jakobs TF. Lubienski A. et al. Percutaneous radiofrequency ablation of pulmonary tumors--is there a difference between treatment under general anaesthesia and under conscious sedation?. European journal of radiology 2006; 59: 168-174
  • 43 Smith SL. Jennings PE. Lung radiofrequency and microwave ablation: a review of indications, techniques and post-procedural imaging appearances. Br J Radiol 2015; 88
  • 44 Lal H. Neyaz Z. Nath A. et al. CT-Guided Percutaneous Biopsy of Intrathoracic Lesions. Korean Journal of Radiology 2012; 13: 210-226
  • 45 Swischuk JL. Castaneda F. Patel JC. et al. Percutaneous transthoracic needle biopsy of the lung: review of 612 lesions. Journal of vascular and interventional radiology: JVIR 1998; 9: 347-352
  • 46 Charig MJ. Phillips AJ. CT-guided cutting needle biopsy of lung lesions--safety and efficacy of an out-patient service. Clinical radiology 2000; 55: 964-969
  • 47 Kazerooni EA. Lim FT. Mikhail A. et al. Risk of pneumothorax in CT-guided transthoracic needle aspiration biopsy of the lung. Radiology 1996; 198: 371-375
  • 48 Kim Y-s. Lee WJ. Rhim H. et al. The Minimal Ablative Margin of Radiofrequency Ablation of Hepatocellular Carcinoma (> 2 and < 5 cm) Needed to Prevent Local Tumor Progression: 3D Quantitative Assessment Using CT Image Fusion. American Journal of Roentgenology 2010; 195: 758-765
  • 49 Wang X. Sofocleous CT. Erinjeri JP. et al. Margin size is an independent predictor of local tumor progression after ablation of colon cancer liver metastases. Cardiovascular and interventional radiology 2013; 36: 166-175
  • 50 Anderson EM. Lees WR. Gillams AR. Early indicators of treatment success after percutaneous radiofrequency of pulmonary tumors. Cardiovascular and interventional radiology 2009; 32: 478-483
  • 51 de Baere T. Palussiere J. Auperin A. et al. Midterm local efficacy and survival after radiofrequency ablation of lung tumors with minimum follow-up of 1 year: prospective evaluation. Radiology 2006; 240: 587-596
  • 52 Giraud P. Antoine M. Larrouy A. et al. Evaluation of microscopic tumor extension in non-small-cell lung cancer for three-dimensional conformal radiotherapy planning. International journal of radiation oncology, biology, physics 2000; 48: 1015-1024
  • 53 Hiraki T. Mimura H. Gobara H. et al. Two cases of needle-tract seeding after percutaneous radiofrequency ablation for lung cancer. Journal of vascular and interventional radiology: JVIR 2009; 20: 415-418
  • 54 Hiraki T. Gobara H. Fujiwara H. et al. Lung cancer ablation: complications. Seminars in interventional radiology 2013; 30: 169-175
  • 55 Abtin FG. Eradat J. Gutierrez AJ. et al. Radiofrequency ablation of lung tumors: imaging features of the postablation zone. Radiographics 2012; 32: 947-969
  • 56 Chheang S. Abtin F. Guteirrez A. et al. Imaging Features following Thermal Ablation of Lung Malignancies. Seminars in interventional radiology 2013; 30: 157-168
  • 57 Palussiere J. Marcet B. Descat E. et al. Lung tumors treated with percutaneous radiofrequency ablation: computed tomography imaging follow-up. Cardiovasc Intervent Radiol 2011; 34: 989-997
  • 58 Yamamoto A. Nakamura K. Matsuoka T. et al. Radiofrequency ablation in a porcine lung model: correlation between CT and histopathologic findings. American journal of roentgenology 2005; 185: 1299-1306
  • 59 Miao Y. Ni Y. Bosmans H. et al. Radiofrequency ablation for eradication of pulmonary tumor in rabbits. The Journal of surgical research 2001; 99: 265-271
  • 60 Goldberg SN. Grassi CJ. Cardella JF. et al. Image-guided tumor ablation: standardization of terminology and reporting criteria. Journal of vascular and interventional radiology: JVIR 2009; 20: S377-S390
  • 61 Zaheer SN. Whitley JM. Thomas PA. et al. Would you bet on PET? Evaluation of the significance of positive PET scan results post-microwave ablation for non-small cell lung cancer. Journal of medical imaging and radiation oncology 2015; 59: 702-712
  • 62 Steinke K. Glenn D. King J. et al. Percutaneous imaging-guided radiofrequency ablation in patients with colorectal pulmonary metastases: 1-year follow-up. Annals of surgical oncology 2004; 11: 207-212
  • 63 Bojarski JD. Dupuy DE. Mayo-Smith WW. CT imaging findings of pulmonary neoplasms after treatment with radiofrequency ablation: results in 32 tumors. American journal of roentgenology 2005; 185: 466-471
  • 64 Nour-Eldin NE. Naguib NN. Tawfik AM. et al. CT volumetric assessment of pulmonary neoplasms after radiofrequency ablation: when to consider a second intervention?. Journal of vascular and interventional radiology: JVIR 2014; 25: 347-354
  • 65 Suh RD. Wallace AB. Sheehan RE. et al. Unresectable pulmonary malignancies: CT-guided percutaneous radiofrequency ablation--preliminary results. Radiology 2003; 229: 821-829
  • 66 Singnurkar A. Solomon SB. Gonen M. et al. 18F-FDG PET/CT for the prediction and detection of local recurrence after radiofrequency ablation of malignant lung lesions. Journal of nuclear medicine: official publication, Society of Nuclear Medicine 2010; 51: 1833-1840
  • 67 Deandreis D. Leboulleux S. Dromain C. et al. Role of FDG PET/CT and chest CT in the follow-up of lung lesions treated with radiofrequency ablation. Radiology 2011; 258: 270-276
  • 68 Bonichon F. Palussiere J. Godbert Y. et al. Diagnostic accuracy of 18F-FDG PET/CT for assessing response to radiofrequency ablation treatment in lung metastases: a multicentre prospective study. European journal of nuclear medicine and molecular imaging 2013; 40: 1817-1827
  • 69 Sharma A. Lanuti M. He W. et al. Increase in fluorodeoxyglucose positron emission tomography activity following complete radiofrequency ablation of lung tumors. Journal of computer assisted tomography 2013; 37: 9-14
  • 70 Suzawa N. Yamakado K. Takao M. et al. Detection of local tumor progression by (18)F-FDG PET/CT following lung radiofrequency ablation: PET versus CT. Clinical nuclear medicine 2013; 38: e166-e170
  • 71 Sharma A. Digumarthy SR. Kalra MK. et al. Reversible locoregional lymph node enlargement after radiofrequency ablation of lung tumors. American journal of roentgenology 2010; 194: 1250-1256
  • 72 Tsuda M. Rikimaru H. Majima K. et al. Time-related changes of radiofrequency ablation lesion in the normal rabbit liver: findings of magnetic resonance imaging and histopathology. Investigative radiology 2003; 38: 525-531
  • 73 Oyama Y. Nakamura K. Matsuoka T. et al. Radiofrequency ablated lesion in the normal porcine lung: long-term follow-up with MRI and pathology. Cardiovascular and interventional radiology 2005; 28: 346-353
  • 74 Gadaleta C. Mattioli V. Colucci G. et al. Radiofrequency ablation of 40 lung neoplasms: preliminary results. American journal of roentgenology 2004; 183: 361-368
  • 75 Okuma T. Matsuoka T. Yamamoto A. et al. Assessment of early treatment response after CT-guided radiofrequency ablation of unresectable lung tumours by diffusion-weighted MRI: a pilot study. The British journal of radiology 2009; 82: 989-994
  • 76 Liu BD. Zhi XY. Expert consensus on image-guided radiofrequency ablation of pulmonary tumors-2015 edition. Translational lung cancer research 2015; 4: 310-321
  • 77 Matsui Y. Hiraki T. Gobara H. et al. Phrenic nerve injury after radiofrequency ablation of lung tumors: retrospective evaluation of the incidence and risk factors. Journal of vascular and interventional radiology: JVIR 2012; 23: 780-785
  • 78 Hiraki T. Gobara H. Mimura H. et al. Brachial nerve injury caused by percutaneous radiofrequency ablation of apical lung cancer: a report of four cases. Journal of vascular and interventional radiology: JVIR 2010; 21: 1129-1133
  • 79 Yang X. Zhang K. Ye X. et al. Artificial pneumothorax for pain relief during microwave ablation of subpleural lung tumors. Indian journal of cancer 2015; 52 (Suppl. 02) e80-e83
  • 80 de Baere T. Auperin A. Deschamps F. et al. Radiofrequency ablation is a valid treatment option for lung metastases: experience in 566 patients with 1037 metastases. Annals of oncology: official journal of the European Society for Medical Oncology / ESMO 2015; 26: 987-991
  • 81 Hiraki T. Tajiri N. Mimura H. et al. Pneumothorax, pleural effusion, and chest tube placement after radiofrequency ablation of lung tumors: incidence and risk factors. Radiology 2006; 241: 275-283
  • 82 Nour-Eldin NE. Naguib NN. Saeed AS. et al. Risk factors involved in the development of pneumothorax during radiofrequency ablation of lung neoplasms. American journal of roentgenology 2009; 193: W43-W48
  • 83 Yoshimatsu R. Yamagami T. Terayama K. et al. Delayed and recurrent pneumothorax after radiofrequency ablation of lung tumors. Chest 2009; 135: 1002-1009
  • 84 Zheng A. Yang X. Ye X. et al. Bronchopleural fistula after lung ablation: Experience in two cases and literature review. Indian journal of cancer 2015; 52 (Suppl. 02) e41-e46
  • 85 Nour-Eldin NE. Naguib NN. Mack M. et al. Pulmonary hemorrhage complicating radiofrequency ablation, from mild hemoptysis to life-threatening pattern. European radiology 2011; 21: 197-204
  • 86 Tajiri N. Hiraki T. Mimura H. et al. Measurement of pleural temperature during radiofrequency ablation of lung tumors to investigate its relationship to occurrence of pneumothorax or pleural effusion. Cardiovascular and interventional radiology 2008; 31: 581-586
  • 87 Kashima M. Yamakado K. Takaki H. et al. Complications after 1000 lung radiofrequency ablation sessions in 420 patients: a single center's experiences. American journal of roentgenology 2011; 197: W576-W580
  • 88 Vansteenkiste J. De Ruysscher D. Eberhardt WE. et al. Early and locally advanced non-small-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of oncology: official journal of the European Society for Medical Oncology / ESMO 2013; 24 (Suppl. 06) vi89-vi98
  • 89 Vansteenkiste J. Crino L. Dooms C. et al. 2nd ESMO Consensus Conference on Lung Cancer: early-stage non-small-cell lung cancer consensus on diagnosis, treatment and follow-up. Annals of oncology: official journal of the European Society for Medical Oncology / ESMO 2014; 25: 1462-1474
  • 90 Bi N. Shedden K. Zheng X. et al. Comparison of the Effectiveness of Radiofrequency Ablation With Stereotactic Body Radiation Therapy in Inoperable Stage I Non-Small Cell Lung Cancer: A Systemic Review and Pooled Analysis. International journal of radiation oncology, biology, physics 2016; 95: 1378-1390
  • 91 Dupuy DE. Fernando HC. Hillman S. et al. Radiofrequency ablation of stage IA non-small cell lung cancer in medically inoperable patients: Results from the American College of Surgeons Oncology Group Z4033 (Alliance) trial. Cancer 2015; 121: 3491-3498
  • 92 Kwan SW. Mortell KE. Talenfeld AD. et al. Thermal ablation matches sublobar resection outcomes in older patients with early-stage non-small cell lung cancer. Journal of vascular and interventional radiology: JVIR 2014; 25: 1-9.e1
  • 93 Leung VA. DiPetrillo TA. Dupuy DE. Image-guided tumor ablation for the treatment of recurrent non-small cell lung cancer within the radiation field. European journal of radiology 2011; 80: e491-e499
  • 94 Schoellnast H. Deodhar A. Hsu M. et al. Recurrent non-small cell lung cancer: evaluation of CT-guided radiofrequency ablation as salvage therapy. Acta radiologica (Stockholm, Sweden: 1987) 2012; 53: 893-899
  • 95 Ahmed M. Moussa M. Goldberg SN. Synergy in cancer treatment between liposomal chemotherapeutics and thermal ablation. Chemistry and physics of lipids 2012; 165: 424-437
  • 96 Zhao Z. Su Z. Zhang W. et al. A randomized study comparing the effectiveness of microwave ablation radioimmunotherapy and postoperative adjuvant chemoradiation in the treatment of non-small cell lung cancer. Journal of BUON: official journal of the Balkan Union of Oncology 2016; 21: 326-332
  • 97 Bastianpillai C. Petrides N. Shah T. et al. Harnessing the immunomodulatory effect of thermal and non-thermal ablative therapies for cancer treatment. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine 2015; 36: 9137-9146
  • 98 Adkins I. Fucikova J. Garg AD. et al. Physical modalities inducing immunogenic tumor cell death for cancer immunotherapy. Oncoimmunology 2014; 3
  • 99 Chen DS. Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity 2013; 39: 1-10
  • 100 Weiser MR. Jarnagin WR. Saltz LB. Colorectal cancer patients with oligometastatic liver disease: what is the optimal approach?. Oncology (Williston Park, NY) 2013; 27: 1074-1078
  • 101 Van Cutsem E. Cervantes A. Adam R. et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Annals of oncology: official journal of the European Society for Medical Oncology / ESMO 2016; 27: 1386-1422
  • 102 Rieber J. Streblow J. Uhlmann L. et al. Stereotactic body radiotherapy (SBRT) for medically inoperable lung metastases-A pooled analysis of the German working group "stereotactic radiotherapy". Lung cancer (Amsterdam, Netherlands) 2016; 97: 51-58
  • 103 Lyons NJ. Pathak S. Daniels IR. et al. Percutaneous management of pulmonary metastases arising from colorectal cancer; a systematic review. European journal of surgical oncology: the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology 2015; 41: 1447-1455
  • 104 Crombe A. Buy X. Godbert Y. et al. 23 Lung Metastases Treated by Radiofrequency Ablation Over 10 Years in a Single Patient: Successful Oncological Outcome of a Metastatic Cancer Without Altered Respiratory Function. Cardiovascular and interventional radiology 2016;