Z Orthop Unfall 2017; 155(06): 708-715
DOI: 10.1055/s-0043-117738
Review/Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Dual Energy Computed Tomography in Musculoskeletal Imaging, with Focus on Fragility Fractures of the Pelvis

Article in several languages: English | deutsch
Carsten Hackenbroch
1   Klinik für Radiologie und Neuroradiologie, Bundeswehrkrankenhaus Ulm
,
Hans-Joachim Riesner
2   Klinik für Unfallchirurgie und Orthopädie, Rekonstruktive und Septische Chirurgie, Sporttraumatologie, Bundeswehrkrankenhaus Ulm
,
Patricia Lang
2   Klinik für Unfallchirurgie und Orthopädie, Rekonstruktive und Septische Chirurgie, Sporttraumatologie, Bundeswehrkrankenhaus Ulm
,
Fabian Stuby
3   Klinik für Unfall- und Wiederherstellungschirurgie der Eberhard-Karls-Universität Tübingen, BG Unfallklinik Tübingen
,
Meinrad Beer
4   Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Ulm
,
Benedikt Friemert
2   Klinik für Unfallchirurgie und Orthopädie, Rekonstruktive und Septische Chirurgie, Sporttraumatologie, Bundeswehrkrankenhaus Ulm
,
Hans-Georg Palm
2   Klinik für Unfallchirurgie und Orthopädie, Rekonstruktive und Septische Chirurgie, Sporttraumatologie, Bundeswehrkrankenhaus Ulm
,
AG Becken III › Author Affiliations
Further Information

Publication History

Publication Date:
14 December 2017 (online)

Abstract

Dual energy computed tomography (DECT) is a constantly evolving technology, which opens up new diagnostic possibilities. It is particularly valuable for musculoskeletal (MSK) imaging. Due to the lack of recognition and availability of dual energy scanners, routine use is only established in a few centres. The intention of this review is to show the possibilities and fields of applications of the DECT in MSK imaging, as well as to describe technical principles and typical indications. We mainly focus on the use of DECT in the context of fragility fractures of the pelvis. The use of the DECT in pelvic fractures of the elderly could combine the advantages of CT diagnostics – fast and continuous availability, lower costs by dispensing with a supplementary MRI examination – and the high sensitivity of MRI to oedema in fragility fractures. Furthermore, the latest DECT scanners are dose neutral, so that these examinations can also be carried out without increased radiation exposure.

 
  • References/Literatur

  • 1 Guggenberger R, Gnannt R, Hodler J. et al. Diagnostic performance of dual-energy CT for the detection of traumatic bone marrow lesions in the ankle: comparison with MR imaging. Radiology 2012; 264: 164-173
  • 2 Pache G, Krauss B, Strohm P. et al. Dual-energy CT virtual noncalcium technique: detecting posttraumatic bone marrow lesions–feasibility study. Radiology 2010; 256: 617-624
  • 3 Wang CK, Tsai JM, Chuang MT. et al. Bone marrow edema in vertebral compression fractures: detection with dual-energy CT. Radiology 2013; 269: 525-533
  • 4 Reddy T, McLaughlin PD, Mallinson PI. et al. Detection of occult, undisplaced hip fractures with a dual-energy CT algorithm targeted to detection of bone marrow edema. Emerg Radiol 2015; 22: 25-29
  • 5 Wagner D, Ossendorf C, Gruszka A. et al. Fragility fractures of the sacrum: how to identify an when to treat surgically?. Eur J Trauma Emerg Surg 2015; 41: 349-362
  • 6 Rommens PM, Hofmann A. Comprehensive classification of fragility fractures of the pelvic ring: Recommendations for surgical treatment. Injury 2013; 44: 1733-1744
  • 7 Stuby FM, Schäffler A, Haas T. et al. Insufficiency fractures of the pelvic ring. Unfallchirurg 2013; 116: 351-364
  • 8 Statistisches Bundesamt. Pressemitteilung Nr. 072 vom 04.03.2016: Lebenserwartung für Jungen 78 Jahre, für Mädchen 83 Jahre. Im Internet: https://www.destatis.de/DE/PresseService/Presse/Pressemitteilungen/2016/03/PD16_072_12621.html Stand: 28.08.2017
  • 9 Hackenbroch C, Riesner HJ, Lang P. et al. [Dual Energy CT – a novel technique for diagnostic testing of fragility fractures of the pelvis]. Z Orthop Unfall 2017; 155: 27-34
  • 10 Lyders EM, Whitlow CT, Baker MD. et al. Imaging and treatment of sacral insufficiency fractures. AJNR Am J Neuroradiol 2010; 31: 201-210
  • 11 Hartman R, Kawashima A, Takahashi N. et al. Applications of dual-energy CT in urologic imaging: an update. Radiol Clin North Am 2012; 50: 191-205
  • 12 Mileto A, Nelson RC, Paulson EK. et al. Dual-Energy MDCT for imaging the renal mass. AJR Am J Roentgenol 2015; 204: W640-W647
  • 13 Benndorf M, Russe MF, Langer M. Detektion einer nicht dislozierten Tibiakopffraktur mittels dual energy Computertomografie und virtueller Non-Kalzium-Technik. Rofo 2016; 188: 783-785
  • 14 Bierry G, Venkatasamy A, Kremer S. et al. Dual-energy CT in vertebral compression fractures: performance of visual and quantitative analysis for bone marrow edema demonstration with comparison to MRI. Skeletal Radiol 2014; 43: 485-492
  • 15 Ai S, Qu M, Glazebrook KN. et al. Use of dual-energy CT and virtual non-calcium techniques to evaluate post-traumatic bone bruises in knees in the subacute setting. Skeletal Radiol 2014; 43: 1289-1295
  • 16 Mallinson PI, Coupal TM, McLaughlin PD. et al. Dual-energy CT for the musculoskeletal system. Radiology 2016; 281: 690-707
  • 17 Wellenberg RH, Boomsma MF, van Osch JA. et al. Quantifying metal artefact reduction using virtual monochromatic dual-layer detector spectral CT imaging in unilateral and bilateral total hip prostheses. Eur J Radiol 2017; 88: 61-67
  • 18 De Cecco CN, Darnell A, Rengo M. et al. Dual-Energy CT: Oncologic Applications. AJR Am J Roentgenol 2012; 199 (5 Suppl): S98-S105
  • 19 Diekhoff T, Scheel M, Hermann S. et al. Osteitis: a retrospective feasibility study comparing single-source dual-energy CT to MRI in selected patients with suspected acute gout. Skeletal Radiol 2017; 46: 185-190
  • 20 Thomas C, Schabel C, Krauss B. et al. Dual-energy CT: virtual calcium subtraction for assessment of bone marrow involvement of the spine in multiple myeloma. AJR Am J Roentgenol 2015; 204: W324-W331
  • 21 Glazebrook KN, Brewerton LJ, Leng S. et al. Case-control study to estimate the performance of dual-energy computed tomography for anterior cruciate ligament tears in patients with history of knee trauma. Skeletal Radiol 2014; 43: 297-305
  • 22 Peltola EK, Koskinen SK. Dual-energy computed tomography of cruciate ligament injuries in acute knee trauma. Skeletal Radiol 2015; 44: 1295-1301
  • 23 Böhme J, Lingslebe U, Steinke H. et al. The extent of ligament injury and its influence on pelvic stability following type II anteroposterior compression pelvic injuries–a computer study to gain insight into open book trauma. J Orthop Res 2014; 32: 873-879
  • 24 van Hamersvelt RW, Schilham AM, Engelke K. et al. Accuracy of bone mineral density quantification using dual-layer spectral detector CT: a phantom study. Eur Radiol 2017; 27: 4351-4359
  • 25 Wichmann JL, Booz C, Wesarg S. et al. Dual-energy CT-based phantomless in vivo three-dimensional bone mineral density assessment of the lumbar spine. Radiology 2014; 271: 778-784
  • 26 Karaca L, Yuceler Z, Kantarci M. et al. The feasibility of dual-energy CT in differentiation of vertebral compression fractures. Br J Radiol 2016; 89: 20150300
  • 27 Seo SH, Sohn YJ, Lee CH. et al. Dual-energy CT for detection of traumatic bone bruises in the knee joint. J Korean Soc Radiol 2016; 69: 487-494
  • 28 Kaup M, Wichmann JL, Scholtz JE. et al. Dual-energy CT-based display of bone marrow edema in osteoporotic vertebral compression fractures: impact on diagnostic accuracy of radiologists with varying levels of experience in correlation to MR Imaging. Radiology 2016; 280: 510-519