Subscribe to RSS
DOI: 10.1055/s-0043-1776005
Platelet Contributions to the (Pre)metastatic Tumor Microenvironment
Funding The research reported in this publication was supported by the National Cancer Institute of the National Institutes of Health under Award Number K99CA283008.Abstract
Alongside their conventional roles in thrombosis and hemostasis, platelets have long been associated with nonhemostatic pathologies, including tumor cell metastasis. Numerous mechanistic studies have since demonstrated that the direct binding of platelets to intravascular tumor cells promotes key hallmarks of metastasis, including survival in circulation and tumor cell arrest at secondary sites. However, platelets also interact with nonmalignant cells that make up the stromal and immune compartments within both primary and metastatic tumors. This review will first provide a brief historical perspective on platelet contributions to metastatic disease before discussing the emerging roles that platelets play in creating microenvironments that likely support successful tumor cell metastasis.
Note
The content is solely the responsibility of the author and does not necessarily represent the official views of the National Institutes of Health.
Publication History
Article published online:
13 October 2023
© 2023. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Metharom P, Falasca M, Berndt MC. The history of Armand Trousseau and cancer-associated thrombosis. Cancers (Basel) 2019; 11 (02) 158
- 2 Gasic GJ, Gasic TB, Stewart CC. Antimetastatic effects associated with platelet reduction. Proc Natl Acad Sci U S A 1968; 61 (01) 46-52
- 3 Kappelmayer J, Nagy Jr B. The interaction of Selectins and PSGL-1 as a key component in thrombus formation and cancer progression. BioMed Res Int 2017; 2017: 6138145
- 4 Kim YJ, Borsig L, Varki NM, Varki A. P-selectin deficiency attenuates tumor growth and metastasis. Proc Natl Acad Sci U S A 1998; 95 (16) 9325-9330
- 5 Felding-Habermann B, Habermann R, Saldívar E, Ruggeri ZM. Role of beta3 integrins in melanoma cell adhesion to activated platelets under flow. J Biol Chem 1996; 271 (10) 5892-5900
- 6 Mammadova-Bach E, Zigrino P, Brucker C. et al. Platelet integrin α6β1 controls lung metastasis through direct binding to cancer cell-derived ADAM9. JCI Insight 2016; 1 (14) e88245
- 7 Yu LX, Yan L, Yang W. et al. Platelets promote tumour metastasis via interaction between TLR4 and tumour cell-released high-mobility group box1 protein. Nat Commun 2014; 5: 5256
- 8 Mammadova-Bach E, Gil-Pulido J, Sarukhanyan E. et al. Platelet glycoprotein VI promotes metastasis through interaction with cancer cell-derived galectin-3. Blood 2020; 135 (14) 1146-1160
- 9 Erpenbeck L, Nieswandt B, Schön M, Pozgajova M, Schön MP. Inhibition of platelet GPIb alpha and promotion of melanoma metastasis. J Invest Dermatol 2010; 130 (02) 576-586
- 10 Suzuki-Inoue K, Kato Y, Inoue O. et al. Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells. J Biol Chem 2007; 282 (36) 25993-26001
- 11 Takagi S, Sato S, Oh-hara T. et al. Platelets promote tumor growth and metastasis via direct interaction between Aggrus/podoplanin and CLEC-2. PLoS ONE 2013; 8 (08) e73609
- 12 Labelle M, Begum S, Hynes RO. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 2011; 20 (05) 576-590
- 13 Foss A, Muñoz-Sagredo L, Sleeman J, Thiele W. The contribution of platelets to intravascular arrest, extravasation, and outgrowth of disseminated tumor cells. Clin Exp Metastasis 2020; 37 (01) 47-67
- 14 Lucotti S, Cerutti C, Soyer M. et al. Aspirin blocks formation of metastatic intravascular niches by inhibiting platelet-derived COX-1/thromboxane A2. J Clin Invest 2019; 129 (05) 1845-1862
- 15 Schumacher D, Strilic B, Sivaraj KK, Wettschureck N, Offermanns S. Platelet-derived nucleotides promote tumor-cell transendothelial migration and metastasis via P2Y2 receptor. Cancer Cell 2013; 24 (01) 130-137
- 16 Khanna C, Hunter K. Modeling metastasis in vivo. Carcinogenesis 2005; 26 (03) 513-523
- 17 Shirai T, Revenko AS, Tibbitts J. et al. Hepatic thrombopoietin gene silencing reduces platelet count and breast cancer progression in transgenic MMTV-PyMT mice. Blood Adv 2019; 3 (20) 3080-3091
- 18 Gareau AJ, Brien C, Gebremeskel S, Liwski RS, Johnston B, Bezuhly M. Ticagrelor inhibits platelet-tumor cell interactions and metastasis in human and murine breast cancer. Clin Exp Metastasis 2018; 35 (1–2): 25-35
- 19 de Visser KE, Joyce JA. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell 2023; 41 (03) 374-403
- 20 Hinshaw DC, Shevde LA. The tumor microenvironment innately modulates cancer progression. Cancer Res 2019; 79 (18) 4557-4566
- 21 Boilard E, Blanco P, Nigrovic PA. Platelets: active players in the pathogenesis of arthritis and SLE. Nat Rev Rheumatol 2012; 8 (09) 534-542
- 22 Etulain J. Platelets in wound healing and regenerative medicine. Platelets 2018; 29 (06) 556-568
- 23 Mandel J, Casari M, Stepanyan M, Martyanov A, Deppermann C. Beyond hemostasis: platelet innate immune interactions and thromboinflammation. Int J Mol Sci 2022; 23 (07) 3868
- 24 Hess KR, Varadhachary GR, Taylor SH. et al. Metastatic patterns in adenocarcinoma. Cancer 2006; 106 (07) 1624-1633
- 25 Paget S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 1989; 8 (02) 98-101
- 26 Hiratsuka S, Nakamura K, Iwai S. et al. MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2002; 2 (04) 289-300
- 27 Kaplan RN, Riba RD, Zacharoulis S. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005; 438 (7069) 820-827
- 28 Liu Y, Cao X. Characteristics and significance of the pre-metastatic niche. Cancer Cell 2016; 30 (05) 668-681
- 29 Peinado H, Zhang H, Matei IR. et al. Pre-metastatic niches: organ-specific homes for metastases. Nat Rev Cancer 2017; 17 (05) 302-317
- 30 Erler JT, Bennewith KL, Cox TR. et al. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell 2009; 15 (01) 35-44
- 31 Huang Y, Song N, Ding Y. et al. Pulmonary vascular destabilization in the premetastatic phase facilitates lung metastasis. Cancer Res 2009; 69 (19) 7529-7537
- 32 Gong Z, Li Q, Shi J. et al. Lung fibroblasts facilitate pre-metastatic niche formation by remodeling the local immune microenvironment. Immunity 2022; 55 (08) 1483-1500.e9
- 33 Patras L, Shaashua L, Matei I, Lyden D. Immune determinants of the pre-metastatic niche. Cancer Cell 2023; 41 (03) 546-572
- 34 Falanga A, Russo L, Verzeroli C. Mechanisms of thrombosis in cancer. Thromb Res 2013; 131 (Suppl. 01) S59-S62
- 35 Rafii DC, Psaila B, Butler J, Jin DK, Lyden D. Regulation of vasculogenesis by platelet-mediated recruitment of bone marrow-derived cells. Arterioscler Thromb Vasc Biol 2008; 28 (02) 217-222
- 36 Massberg S, Konrad I, Schürzinger K. et al. Platelets secrete stromal cell-derived factor 1alpha and recruit bone marrow-derived progenitor cells to arterial thrombi in vivo. J Exp Med 2006; 203 (05) 1221-1233
- 37 Feng W, Madajka M, Kerr BA, Mahabeleshwar GH, Whiteheart SW, Byzova TV. A novel role for platelet secretion in angiogenesis: mediating bone marrow-derived cell mobilization and homing. Blood 2011; 117 (14) 3893-3902
- 38 Opneja A, Kapoor S, Stavrou EX. Contribution of platelets, the coagulation and fibrinolytic systems to cutaneous wound healing. Thromb Res 2019; 179: 56-63
- 39 Rossaint J, Margraf A, Zarbock A. Role of platelets in leukocyte recruitment and resolution of inflammation. Front Immunol 2018; 9: 2712
- 40 Roweth HG, Battinelli EM. Platelets and (lymph)angiogenesis. Cold Spring Harb Perspect Med 2023; 13 (01) a041174
- 41 Guo L, Rondina MT. The era of thromboinflammation: platelets are dynamic sensors and effector cells during infectious diseases. Front Immunol 2019; 10: 2204
- 42 Stoll G, Nieswandt B. Thrombo-inflammation in acute ischaemic stroke - implications for treatment. Nat Rev Neurol 2019; 15 (08) 473-481
- 43 Burkard P, Schonhart C, Vögtle T. et al. A key role for platelet GPVI in neutrophil recruitment, migration and NETosis in the early stages of acute lung injury. Blood 2023; blood.2023019940
- 44 Caudrillier A, Kessenbrock K, Gilliss BM. et al. Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. J Clin Invest 2012; 122 (07) 2661-2671
- 45 Cools-Lartigue J, Spicer J, McDonald B. et al. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J Clin Invest 2013; 123 (08) 3446-3458
- 46 Wang Y, Sun Y, Li D. et al. Platelet P2Y12 is involved in murine pulmonary metastasis. PLoS ONE 2013; 8 (11) e80780
- 47 Kerr BA, McCabe NP, Feng W, Byzova TV. Platelets govern pre-metastatic tumor communication to bone. Oncogene 2013; 32 (36) 4319-4324
- 48 Hiratsuka S, Watanabe A, Sakurai Y. et al. The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nat Cell Biol 2008; 10 (11) 1349-1355
- 49 Assoian RK, Komoriya A, Meyers CA, Miller DM, Sporn MB. Transforming growth factor-beta in human platelets. Identification of a major storage site, purification, and characterization. J Biol Chem 1983; 258 (11) 7155-7160
- 50 Roweth HG, Malloy MW, Goreczny GJ. et al. Pro-inflammatory megakaryocyte gene expression in murine models of breast cancer. Sci Adv 2022; 8 (41) eabo5224
- 51 Sheu JR, Fong TH, Liu CM. et al. Expression of matrix metalloproteinase-9 in human platelets: regulation of platelet activation in in vitro and in vivo studies. Br J Pharmacol 2004; 143 (01) 193-201
- 52 Hiratsuka S, Watanabe A, Aburatani H, Maru Y. Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol 2006; 8 (12) 1369-1375
- 53 Dudiki T, Veleeparambil M, Zhevlakova I. et al. Mechanism of tumor-platelet communications in cancer. Circ Res 2023; 132 (11) 1447-1461
- 54 Klement GL, Yip TT, Cassiola F. et al. Platelets actively sequester angiogenesis regulators. Blood 2009; 113 (12) 2835-2842
- 55 Roweth HG, Battinelli EM. Lessons to learn from tumor-educated platelets. Blood 2021; 137 (23) 3174-3180
- 56 Peinado H, Alečković M, Lavotshkin S. et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 2012; 18 (06) 883-891
- 57 Guo Y, Ji X, Liu J. et al. Effects of exosomes on pre-metastatic niche formation in tumors. Mol Cancer 2019; 18 (01) 39
- 58 Kuznetsov HS, Marsh T, Markens BA. et al. Identification of luminal breast cancers that establish a tumor-supportive macroenvironment defined by proangiogenic platelets and bone marrow-derived cells. Cancer Discov 2012; 2 (12) 1150-1165
- 59 Labelle M, Hynes RO. The initial hours of metastasis: the importance of cooperative host-tumor cell interactions during hematogenous dissemination. Cancer Discov 2012; 2 (12) 1091-1099
- 60 Labelle M, Begum S, Hynes RO. Platelets guide the formation of early metastatic niches. Proc Natl Acad Sci U S A 2014; 111 (30) E3053-E3061
- 61 Qian BZ, Li J, Zhang H. et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 2011; 475 (7355) 222-225
- 62 McCarty OJ, Mousa SA, Bray PF, Konstantopoulos K. Immobilized platelets support human colon carcinoma cell tethering, rolling, and firm adhesion under dynamic flow conditions. Blood 2000; 96 (05) 1789-1797
- 63 Echtler K, Konrad I, Lorenz M. et al. Platelet GPIIb supports initial pulmonary retention but inhibits subsequent proliferation of melanoma cells during hematogenic metastasis. PLoS ONE 2017; 12 (03) e0172788
- 64 Ren J, He J, Zhang H. et al. Platelet TLR4-ERK5 axis facilitates NET-mediated capturing of circulating tumor cells and distant metastasis after surgical stress. Cancer Res 2021; 81 (09) 2373-2385
- 65 Cho MS, Bottsford-Miller J, Vasquez HG. et al. Platelets increase the proliferation of ovarian cancer cells. Blood 2012; 120 (24) 4869-4872
- 66 Thiele W, Rothley M, Dimmler A, Bugert P, Salomó Coll C, Sleeman JP. Platelet deficiency in Tpo−/− mice can both promote and suppress the metastasis of experimental breast tumors in an organ-specific manner. Clin Exp Metastasis 2018; 35 (07) 679-689
- 67 Garcia-Leon MJ, Lefebvre O, Follain G. et al. Platelets favor the outgrowth of established metastases. bioRxiv [Preprint]; 2022; 1-24
- 68 Ungerer M, Rosport K, Bültmann A. et al. Novel antiplatelet drug revacept (Dimeric Glycoprotein VI-Fc) specifically and efficiently inhibited collagen-induced platelet aggregation without affecting general hemostasis in humans. Circulation 2011; 123 (17) 1891-1899
- 69 Boucharaba A, Serre CM, Grès S. et al. Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer. J Clin Invest 2004; 114 (12) 1714-1725
- 70 Ma C, Fu Q, Diggs LP. et al. Platelets control liver tumor growth through P2Y12-dependent CD40L release in NAFLD. Cancer Cell 2022; 40 (09) 986-998.e5
- 71 Zhang Y, Cedervall J, Hamidi A. et al. Platelet-specific PDGFB ablation impairs tumor vessel integrity and promotes metastasis. Cancer Res 2020; 80 (16) 3345-3358
- 72 McNeil JJ, Nelson MR, Woods RL. et al; ASPREE Investigator Group. Effect of aspirin on all-cause mortality in the healthy elderly. N Engl J Med 2018; 379 (16) 1519-1528
- 73 Rothwell PM, Wilson M, Price JF, Belch JF, Meade TW, Mehta Z. Effect of daily aspirin on risk of cancer metastasis: a study of incident cancers during randomised controlled trials. Lancet 2012; 379 (9826) 1591-1601
- 74 Stravodimou A, Voutsadakis IA. Pretreatment thrombocytosis as a prognostic factor in metastatic breast cancer. Int J Breast Cancer 2013; 2013: 289563
- 75 Zhang W, Yu C, Huang B, Zhou FL, Huang HD, Li Q. Correlation between bone metastasis and thrombocytosis in pulmonary adenocarcinoma patients. Oncol Lett 2015; 9 (02) 762-768
- 76 Castaño Z, San Juan BP, Spiegel A. et al. IL-1β inflammatory response driven by primary breast cancer prevents metastasis-initiating cell colonization. Nat Cell Biol 2018; 20 (09) 1084-1097
- 77 Gaertner F, Ahmad Z, Rosenberger G. et al. Migrating platelets are mechano-scavengers that collect and bundle bacteria. Cell 2017; 171 (06) 1368-1382.e23
- 78 McNeil JJ, Gibbs P, Orchard SG. et al; ASPREE Investigator Group. Effect of aspirin on cancer incidence and mortality in older adults. J Natl Cancer Inst 2021; 113 (03) 258-265
- 79 Elwood PC, Morgan G, Pickering JE. et al. Aspirin in the treatment of cancer: Reductions in metastatic spread and in mortality: a systematic review and meta-analyses of published studies. PLoS ONE 2016; 11 (04) e0152402
- 80 Sostres C, Gargallo CJ, Lanas A. Aspirin, cyclooxygenase inhibition and colorectal cancer. World J Gastrointest Pharmacol Ther 2014; 5 (01) 40-49
- 81 Schwartz KA. Aspirin resistance: a clinical review focused on the most common cause, noncompliance. Neurohospitalist 2011; 1 (02) 94-103
- 82 Freedman JE. The aspirin resistance controversy: clinical entity or platelet heterogeneity?. Circulation 2006; 113 (25) 2865-2867
- 83 Jósa V, Krzystanek M, Vass T. et al. Thrombocytosis of liver metastasis from colorectal cancer as predictive factor. Pathol Oncol Res 2015; 21 (04) 991-997
- 84 Suppiah R, Shaheen PE, Elson P. et al. Thrombocytosis as a prognostic factor for survival in patients with metastatic renal cell carcinoma. Cancer 2006; 107 (08) 1793-1800
- 85 Bailey SE, Ukoumunne OC, Shephard EA, Hamilton W. Clinical relevance of thrombocytosis in primary care: a prospective cohort study of cancer incidence using English electronic medical records and cancer registry data. Br J Gen Pract 2017; 67 (659) e405-e413
- 86 Giannakeas V, Narod SA. Incidence of cancer among adults with thrombocytosis in Ontario, Canada. JAMA Netw Open 2021; 4 (08) e2120633
- 87 Stone RL, Nick AM, McNeish IA. et al. Paraneoplastic thrombocytosis in ovarian cancer. N Engl J Med 2012; 366 (07) 610-618
- 88 Zaslavsky AB, Adams MP, Cao X. et al. Platelet PD-L1 suppresses anti-cancer immune cell activity in PD-L1 negative tumors. Sci Rep 2020; 10 (01) 19296
- 89 Guo Q, Malloy MW, Roweth HG, McAllister SS, Italiano JE, Battinelli EM. Platelets upregulate tumor cell programmed death ligand 1 in an epidermal growth factor receptor-dependent manner in vitro. Blood Adv 2022; 6 (20) 5668-5675
- 90 Hinterleitner C, Strähle J, Malenke E. et al. Platelet PD-L1 reflects collective intratumoral PD-L1 expression and predicts immunotherapy response in non-small cell lung cancer. Nat Commun 2021; 12 (01) 7005
- 91 Li H, Wang Z, Chen Z. et al. Disrupting tumour vasculature and recruitment of aPDL1-loaded platelets control tumour metastasis. Nat Commun 2021; 12 (01) 2773
- 92 Wang C, Sun W, Ye Y, Hu Q, Bomba H, Gu Z. In situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapy. Nat Biomed Eng 2017; 1 (02) 0011
- 93 Wang Y, Li W, Li Z. et al. Active recruitment of anti-PD-1-conjugated platelets through tumor-selective thrombosis for enhanced anticancer immunotherapy. Sci Adv 2023; 9 (13) eadf6854