CC BY 4.0 · Arq Neuropsiquiatr 2023; 81(12): 1112-1124
DOI: 10.1055/s-0043-1777104
View and Review

Review of dengue, zika and chikungunya infections in nervous system in endemic areas

Revisão da infecção por dengue, zika e chikungunya no sistema nervoso em áreas endêmicas
1   Universidade Federal do Estado do Rio de Janeiro, Escola de Medicina e Cirurgia, Departamento de Medicina Geral, Rio de Janeiro RJ, Brazil.
2   Universidade Federal do Rio de Janeiro, Faculdade de Medicina, Programa de Pós-Graduação em Doenças Infecciosas e Parasitárias, Rio de Janeiro RJ, Brazil.
,
3   Hospital Federal dos Servidores do Estado, Rio de Janeiro RJ, Brazil.
,
4   Santa Casa BH, Faculdade de Saúde, Programa de Pós-Graduação Stricto Sensu em Medicina-Biomedicina, Belo Horizonte MG, Brazil.
5   Universidade Federal de Minas Gerais, Faculdade de Medicina, Departamento de Neurologia, Belo Horizonte MG, Brazil.
,
6   Universidade Federal do Paraná, Faculdade de Medicina, Departamento de Patologia Médica, Curitiba PR, Brazil.
› Author Affiliations

Abstract

Dengue, zika, and chikungunya are arboviruses of great epidemiological relevance worldwide. The emergence and re-emergence of viral infections transmitted by mosquitoes constitute a serious human public health problem. The neurological manifestations caused by these viruses have a high potential for death or sequelae. The complications that occur in the nervous system associated with arboviruses can be a challenge for diagnosis and treatment. In endemic areas, suspected cases should include acute encephalitis, myelitis, encephalomyelitis, polyradiculoneuritis, and/or other syndromes of the central or peripheral nervous system, in the absence of a known explanation. The confirmation diagnosis is based on viral (isolation or RT-PCR) or antigens detection in tissues, blood, cerebrospinal fluid, or other body fluids, increase in IgG antibody titers between paired serum samples, specific IgM antibody in cerebrospinal fluid and serological conversion to IgM between paired serum samples (non-reactive in the acute phase and reactive in the convalescent). The cerebrospinal fluid examination can demonstrate: 1. etiological agent; 2. inflammatory reaction or protein-cytological dissociation depending on the neurological condition; 3. specific IgM, 4. intrathecal synthesis of specific IgG (dengue and chikungunya); 5. exclusion of other infectious agents. The treatment of neurological complications aims to improve the symptoms, while the vaccine represents the great hope for the control and prevention of neuroinvasive arboviruses. This narrative review summarizes the updated epidemiology, general features, neuropathogenesis, and neurological manifestations associated with dengue, zika, and chikungunya infection.

Resumo

Dengue, zika e chikungunya são arboviroses de grande relevância epidemiológica em todo o mundo. A emergência e reemergência dessas infecções virais transmitidas por mosquitos constituem um grave problema de saúde pública humana. As manifestações neurológicas causadas por esses vírus têm alto potencial de morte ou sequelas. As complicações que ocorrem no sistema nervoso associadas às arboviroses podem representar um desafio diagnóstico e de tratamento. Em áreas endêmicas, casos suspeitos devem incluir encefalite, mielite, encefalomielite, polirradiculoneurite e/ou outras síndromes do sistema nervoso central ou periférico, na ausência de explicação conhecida. Caso confirmado de arbovirose neuroinvasivo é baseado na detecção viral (isolamento ou RT-PCR) ou de antígenos em tecidos, sangue, líquido cefalorraquidiano ou outros fluidos corporais, aumento dos títulos de anticorpos IgG entre amostras de soro pareadas, anticorpo IgM específico no líquido cefalorraquidiano e conversão sorológica para IgM entre amostras de soro pareadas. O exame do líquido cefalorraquidiano pode demonstrar: 1. agente etiológico; 2. reação inflamatória ou dissociação proteico-citológica, dependendo do quadro neurológico; 3. valor absoluto de IgM específica; 4. síntese intratecal de anticorpos IgG específicos (dengue e chikungunya); 5. exclusão de outros agentes infecciosos. O tratamento das complicações neurológicas visa melhorar os sintomas, enquanto a vacina representa a grande esperança para o controle e a prevenção das arboviroses neuroinvasivas. Esta revisão narrativa resume a atualização da epidemiologia, características gerais, neuropatogênese e manifestações neurológicas associadas à infecção pelos vírus da dengue, zika e chikungunya.

Authors' Contributions

All authors contributed to the concept, acquisition, and interpretation of data. All authors provided critical revision and approved the final version of the manuscript. All authors agreed on all aspects of the work. All authors have read and agreed to the published version of the manuscript.




Publication History

Received: 14 August 2023

Accepted: 15 October 2023

Article published online:
29 December 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution 4.0 International License, permitting copying and reproduction so long as the original work is given appropriate credit (https://creativecommons.org/licenses/by/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • References

  • 1 Ministério da Saúde (MS). Secretaria de Vigilância em Saúde. Departamento de Vigilância de Doenças Transmissíveis. Manual de Vigilância Sentinela de Doenças Neuroinvasivas por Arbovírus. 1st edition.. Brasília: MS; 2017: 48
  • 2 Secretaria de Vigilância em Saúde. Ministério da Saúde. Boletim Epidemiológico. Monitoramento dos casos de arboviroses até a semana epidemiológica 52 de 2022. Brazil: Ministério da Saúde; Volume 54. / Jan 2023
  • 3 Mello CDS, Cabral-Castro MJ, Silva de Faria LC, Peralta JM, Puccioni-Sohler M. Dengue and chikungunya infection in neurologic disorders from endemic areas in Brazil. Neurol Clin Pract 2020; 10 (06) 497-502
  • 4 ECDC. (2021). Geographical distribution of dengue cases reported worldwide, 2021. Available at: link. https://www.ecdc.europa.eu/en/publications-data/geographical-distribution-dengue-cases-reported-worldwide-2021
  • 5 Kok BH, Lim HT, Lim CP, Lai NS, Leow CY, Leow CH. Dengue virus infection - a review of pathogenesis, vaccines, diagnosis and therapy. Virus Res 2023; 324: 199018
  • 6 Soares CN, Faria LC, Peralta JM, de Freitas MR, Puccioni-Sohler M. Dengue infection: neurological manifestations and cerebrospinal fluid (CSF) analysis. J Neurol Sci 2006; 249 (01) 19-24
  • 7 World Health Organization. (‎2009)‎. Dengue guidelines for diagnosis, treatment, prevention and control: new edition. World Health Organization; . Available at: link. https://apps.who.int/iris/handle/10665/44188
  • 8 Carod-Artal FJ, Wichmann O, Farrar J, Gascón J. Neurological complications of dengue virus infection. Lancet Neurol 2013; 12 (09) 906-919
  • 9 Trivedi S, Chakravarty A. Neurological Complications of Dengue Fever. Curr Neurol Neurosci Rep 2022; 22 (08) 515-529
  • 10 Chaturvedi UC, Dhawan R, Khanna M, Mathur A. Breakdown of the blood-brain barrier during dengue virus infection of mice. J Gen Virol 1991; 72 (Pt 4): 859-866
  • 11 Soares CN, Cabral-Castro MJ, Peralta JM, de Freitas MR, Zalis M, Puccioni-Sohler M. Review of the etiologies of viral meningitis and encephalitis in a dengue endemic region. J Neurol Sci 2011; 303 (1-2): 75-79
  • 12 Arora N, Kumar D, Kiran R, Pannu AK. Dengue encephalitis and ‘double doughnut’ sign. BMJ Case Rep 2021; 14 (07) e244870
  • 13 Mishra A, Pandey S. Generalized Dystonia/Parkinsonism and Double-Doughnut Sign in Dengue Encephalitis. Mov Disord Clin Pract (Hoboken) 2020; 7 (05) 585-586
  • 14 Soares CN, Cabral-Castro MJ, Peralta JM, Freitas MR, Puccioni-Sohler M. Meningitis determined by oligosymptomatic dengue virus type 3 infection: report of a case. Int J Infect Dis 2010; 14 (02) e150-e152
  • 15 Puccioni-Sohler M, Soares CN, Papaiz-Alvarenga R, Castro MJ, Faria LC, Peralta JM. Neurologic dengue manifestations associated with intrathecal specific immune response. Neurology 2009; 73 (17) 1413-1417
  • 16 Gulia M, Dalal P, Gupta M, Kaur D. Concurrent Guillain-Barré syndrome and myositis complicating dengue fever. BMJ Case Rep 2020; 13 (02) e232940
  • 17 Salgado DM, Eltit JM, Mansfield K. et al. Heart and skeletal muscle are targets of dengue virus infection. Pediatr Infect Dis J 2010; 29 (03) 238-242
  • 18 Puccioni-Sohler M, Orsini M, Soares CN. Dengue: a new challenge for neurology. Neurol Int 2012; 4 (03) e15
  • 19 Tan CY, Razali SNO, Goh KJ, Sam IC, Shahrizaila N. Association of dengue infection and Guillain-Barré syndrome in Malaysia. J Neurol Neurosurg Psychiatry 2019; 90 (11) 1298-1300
  • 20 Soares CN, Cabral-Castro M, Oliveira C. et al. Oligosymptomatic dengue infection: a potential cause of Guillain Barré syndrome. Arq Neuropsiquiatr 2008; 66 (2A): 234-237 . Doi: 10.1590/s0004-282. Doi: X2008000200018
  • 21 Chappuis F, Justafré JC, Duchunstang L, Loutan L, Taylor WR. Dengue fever and long thoracic nerve palsy in a traveler returning from Thailand. J Travel Med 2004; 11 (02) 112-114
  • 22 Donnio A, Béral L, Olindo S, Cabie A, Merle H. [Dengue, a new etiology in oculomotor paralysis]. Can J Ophthalmol 2010; 45 (02) 183-184
  • 23 Ansari MK, Jha S, Nath A. Unilateral diaphragmatic paralysis following dengue infection. Neurol India 2010; 58 (04) 596-598
  • 24 Puccioni-Sohler M, Ornelas AMM, de Souza AS. et al. First report of persistent dengue-1-associated autoimmune neurological disturbance: neuromyelitis optica spectrum disorder. J Neurovirol 2017; 23 (05) 768-771
  • 25 Comtois J, Camara-Lemarroy CR, Mah JK. et al. Longitudinally extensive transverse myelitis with positive aquaporin-4 IgG associated with dengue infection: a case report and systematic review of cases. Mult Scler Relat Disord 2021; 55: 103206
  • 26 Muller DA, Depelsenaire AC, Young PR. Clinical and Laboratory Diagnosis of Dengue Virus Infection. J Infect Dis 2017; 215 (Suppl. 02) S89-S95
  • 27 Araújo FM, Brilhante RS, Cavalcanti LP. et al. Detection of the dengue non-structural 1 antigen in cerebral spinal fluid samples using a commercially available enzyme-linked immunosorbent assay. J Virol Methods 2011; 177 (01) 128-131
  • 28 Singh PK, Sheoran A, Tetarwal P, Singh P, Singh P. Dengue Hemorrhagic Encephalitis in Dengue Epidemic. J Glob Infect Dis 2022; 15 (01) 37-38
  • 29 Palanichamy Kala M, St John AL, Rathore APS. Dengue. Curr Treat Options Infect Dis 2023; 15 (02) 27-52
  • 30 European Medicines Agency. Qdenga. European Medicines Agency. Published October 12, 2022. https://www.ema.europa.eu/en/medicines/human/EPAR/qdenga
  • 31 Pan American Health Organization. 2023, Zika. Accessed on July 15, 2023. Available at: link: https://www.paho.org/en/topics/zika
  • 32 Cao-Lormeau VM, Blake A, Mons S. et al. Guillain-Barré Syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. Lancet 2016; 387 (10027): 1531-1539
  • 33 Bernardo-Menezes LC, Agrelli A, Oliveira ASLE, Moura RR, Crovella S, Brandão LAC. An overview of Zika virus genotypes and their infectivity. Rev Soc Bras Med Trop 2022; 55: e02632022
  • 34 World Health Organization. 2022, Zika vírus. Accessed on July 15, 2023. Available at: link. https://www.who.int/news-room/fact-sheets/detail/zika-virus
  • 35 Musso D, Ko AI, Baud D. Zika Virus Infection - After the Pandemic. N Engl J Med 2019; 381 (15) 1444-1457
  • 36 Nikookar SH, Fazeli-Dinan M, Enayati A, Zaim M. Zika; a continuous global threat to public health. Environ Res 2020; 188: 109868
  • 37 Brito Ferreira ML, Antunes de Brito CA, Moreira ÁJP. et al. Guillain-Barré Syndrome, Acute Disseminated Encephalomyelitis and Encephalitis Associated with Zika Virus Infection in Brazil: Detection of Viral RNA and Isolation of Virus during Late Infection. Am J Trop Med Hyg 2017; 97 (05) 1405-1409
  • 38 de Paula Freitas B, Ventura CV, Maia M, Belfort Jr R. Zika virus and the eye. Curr Opin Ophthalmol 2017; 28 (06) 595-599
  • 39 de Oliveira WK, de França GVA, Carmo EH, Duncan BB, de Souza Kuchenbecker R, Schmidt MI. Infection-related microcephaly after the 2015 and 2016 Zika virus outbreaks in Brazil: a surveillance-based analysis. Lancet 2017; 390 (10097): 861-870
  • 40 Pan American Health Organization. 2018, Zika cases and congenital syndrome associated with Zika virus reported by countries and territories in the Americas, 2015 - 2018: Cumulative cases - Data as of 4 January 2018. Accessed on July 15 2023. Available at: link: https://www.paho.org/en/node/60231
  • 41 Martins MM, Medronho RA, Cunha AJLAD. Zika virus in Brazil and worldwide: a narrative review. Paediatr Int Child Health 2021; 41 (01) 28-35
  • 42 Einspieler C, Utsch F, Brasil P. et al; GM Zika Working Group. Association of Infants Exposed to Prenatal Zika Virus Infection With Their Clinical, Neurologic, and Developmental Status Evaluated via the General Movement Assessment Tool. JAMA Netw Open 2019; 2 (01) e187235
  • 43 Dos Santos T, Rodriguez A, Almiron M. et al. Zika Virus and the Guillain-Barré Syndrome - Case Series from Seven Countries. N Engl J Med 2016; 375 (16) 1598-1601
  • 44 Nascimento OJM, da Silva IRF. Guillain-Barré syndrome and Zika virus outbreaks. Curr Opin Neurol 2017; 30 (05) 500-507
  • 45 da Silva IRF, Frontera JA, Bispo de Filippis AM, Nascimento OJMD. RIO-GBS-ZIKV Research Group. Neurologic Complications Associated With the Zika Virus in Brazilian Adults. JAMA Neurol 2017; 74 (10) 1190-1198
  • 46 Mancera-Páez O, Román GC, Pardo-Turriago R, Rodríguez Y, Anaya JM. Concurrent Guillain-Barré syndrome, transverse myelitis and encephalitis post-Zika: A case report and review of the pathogenic role of multiple arboviral immunity. J Neurol Sci 2018; 395: 47-53
  • 47 Pradhan F, Burns JD, Agameya A. et al. Case Report: Zika Virus Meningoencephalitis and Myelitis and Associated Magnetic Resonance Imaging Findings. Am J Trop Med Hyg 2017; 97 (02) 340-343
  • 48 Neri VC, Xavier MF, Barros PO, Melo Bento C, Marignier R, Papais Alvarenga R. Case Report: Acute Transverse Myelitis after Zika Virus Infection. Am J Trop Med Hyg 2018; 99 (06) 1419-1421
  • 49 Zare Mehrjardi M, Carteaux G, Poretti A. et al. Neuroimaging findings of postnatally acquired Zika virus infection: a pictorial essay. Jpn J Radiol 2017; 35 (07) 341-349
  • 50 Salgado DM, Vega R, Rodríguez JA. et al. Clinical, laboratory and immune aspects of Zika virus-associated encephalitis in children. Int J Infect Dis 2020; 90: 104-110
  • 51 Hygino da Cruz Jr LC, Nascimento OJM, Lopes FPPL, da Silva IRF. Neuroimaging Findings of Zika Virus-Associated Neurologic Complications in Adults. AJNR Am J Neuroradiol 2018; 39 (11) 1967-1974
  • 52 Milhim BHGA, da Rocha LC, Terzian ACB. et al. Arboviral Infections in Neurological Disorders in Hospitalized Patients in São José do Rio Preto, São Paulo, Brazil. Viruses 2022; 14 (07) 1488
  • 53 Masmejan S, Musso D, Vouga M. et al. Zika Virus. Pathogens 2020; 9 (11) 898
  • 54 Adebanjo T, Godfred-Cato S, Viens L. et al; Contributors. Update: Interim Guidance for the Diagnosis, Evaluation, and Management of Infants with Possible Congenital Zika Virus Infection - United States, October 2017. MMWR Morb Mortal Wkly Rep 2017; 66 (41) 1089-1099
  • 55 Carod-Artal FJ. Neurological complications of Zika virus infection. Expert Rev Anti Infect Ther 2018; 16 (05) 399-410
  • 56 Matusali G, Colavita F, Bordi L. et al. Tropism of the Chikungunya Virus. Viruses 2019; 11 (02) 175
  • 57 Robinson MC. An epidemic of virus disease in Southern Province, Tanganyika Territory, in 1952-53. I. Clinical features. Trans R Soc Trop Med Hyg 1955; 49 (01) 28-32
  • 58 Schnierle BS. Cellular Attachment and Entry Factors for Chikungunya Virus. Viruses 2019; 11 (11) 1078
  • 59 Abraham R, Mudaliar P, Padmanabhan A, Sreekumar E. Induction of cytopathogenicity in human glioblastoma cells by chikungunya virus. PLoS One 2013; 8 (09) e75854
  • 60 Das T, Hoarau JJ, Bandjee MCJ, Maquart M, Gasque P. Multifaceted innate immune responses engaged by astrocytes, microglia and resident dendritic cells against Chikungunya neuroinfection. J Gen Virol 2015; 96 (Pt 2): 294-310
  • 61 Gonçalves Júnior J, de Oliveira Bringel M, Rodrigues de Morais L. et al. Chikungunya neurological manifestations: a systematic literature review. Current Perspectives on Viral Disease Outbreaks - Epidemiology, Detection and Control. IntechOpen 2022;
  • 62 Mehta R, Gerardin P, de Brito CAA, Soares CN, Ferreira MLB, Solomon T. The neurological complications of chikungunya virus: A systematic review. Rev Med Virol 2018; 28 (03) e1978
  • 63 Chopra A, Anuradha V, Ghorpade R, Saluja M. Acute Chikungunya and persistent musculoskeletal pain following the 2006 Indian epidemic: a 2-year prospective rural community study. Epidemiol Infect 2012; 140 (05) 842-850
  • 64 Chandak NH, Kashyap RS, Kabra D. et al. Neurological complications of Chikungunya virus infection. Neurol India 2009; 57 (02) 177-180
  • 65 Cerny T, Schwarz M, Schwarz U, Lemant J, Gérardin P, Keller E. The range of neurological complications in chikungunya fever. Neurocrit Care 2017; 27 (03) 447-457
  • 66 Goh C, Desmond PM, Phal PM. MRI in transverse myelitis. J Magn Reson Imaging 2014; 40 (06) 1267-1279
  • 67 Peixoto VGMNP, Azevedo JP, Luz KG, Almondes KM. Cognitive Dysfunction of Chikungunya Virus Infection in Older Adults. Front Psychiatry 2022; 13: 823218
  • 68 Musthafa AK, Abdurahiman P, Jose J. Case of ADEM following Chikungunya fever. J Assoc Physicians India 2008; 56: 473
  • 69 Gérardin P, Barau G, Michault A. et al. Multidisciplinary prospective study of mother-to-child chikungunya virus infections on the island of La Réunion. PLoS Med 2008; 5 (03) e60
  • 70 Torres JR, Falleiros-Arlant LH, Dueñas L, Pleitez-Navarrete J, Salgado DM, Castillo JB. Congenital and perinatal complications of chikungunya fever: a Latin American experience. Int J Infect Dis 2016; 51: 85-88
  • 71 de Almeida SM, Furlan SMP, Cretella AMM. et al. Comparison of Cerebrospinal Fluid Biomarkers for Differential Diagnosis of Acute Bacterial and Viral Meningitis with Atypical Cerebrospinal Fluid Characteristics. Med Princ Pract 2020; 29 (03) 244-254
  • 72 de Almeida SM, Castoldi JR, Riechi SC. Comparison between cerebrospinal fluid biomarkers for differential diagnosis of acute meningitis. Diagnosis (Berl) 2023; 10 (03) 298-308
  • 73 Saha S, Ramesh A, Kalantar K. et al. Unbiased metagenomic sequencing for pediatric meningitis in Bangladesh reveals neuroinvasive Chikungunya virus outbreak and other unrealized pathogens. MBio 2019; 10 (06) e02877-e19
  • 74 Puccioni-Sohler M, Farias LC, Cabral-Castro MJ, Zalis MG, Kalil RS, Salgado MCF. Cerebrospinal Fluid Immunoglobulins as Potential Biomarkers of Chikungunya Encephalitis. Emerg Infect Dis 2018; 24 (05) 939-941
  • 75 Campos GS, Albuquerque Bandeira AC, Diniz Rocha VF, Dias JP, Carvalho RH, Sardi SI. First detection of chikungunya virus in breast milk. Pediatr Infect Dis J 2017; 36 (10) 1015-1017
  • 76 Bandeira AC, Campos GS, Rocha VF. et al. Prolonged shedding of Chikungunya virus in semen and urine: A new perspective for diagnosis and implications for transmission. IDCases 2016; 6: 100-103
  • 77 Musso D, Teissier A, Rouault E, Teururai S, de Pina JJ, Nhan TX. Detection of chikungunya virus in saliva and urine. Virol J 2016; 13: 102
  • 78 Robin S, Ramful D, Le Seach' F, Jaffar-Bandjee MC, Rigou G, Alessandri JL. Neurologic manifestations of pediatric chikungunya infection. J Child Neurol 2008; 23 (09) 1028-1035
  • 79 Gérardin P, Couderc T, Bintner M. et al; Encephalchik Study Group. Chikungunya virus-associated encephalitis: A cohort study on La Réunion Island, 2005-2009. Neurology 2016; 86 (01) 94-102
  • 80 Choudhary N, Makhija P, Puri V, Khwaja GA, Duggal A. An unusual case of myelitis with myositis. J Clin Diagn Res 2016; 10 (05) OD19-OD20
  • 81 WHO. Chikungunya, 2022. Accessed on June 20, 2023. Available at: link: https://www.who.int/news-room/fact-sheets/detail/chikungunya#:∼:text=CHIKV%20was%20first%20identified%20in,in%20the%201970s%20(2) . Consulted 20 06 2023
  • 82 Ma S, Zhu F, Wen H. et al. Development of a novel multi-epitope vaccine based on capsid and envelope protein against Chikungunya virus. J Biomol Struct Dyn 2023; •••: 1-13 ; Online ahead of print