Int J Sports Med 1999; 20(7): 429-437
DOI: 10.1055/s-1999-8825
Physiology and Biochemistry
Georg Thieme Verlag Stuttgart ·New York

The Role of Cadence on the V˙O2 Slow Component in Cycling and Running in Triathletes

V. L. Billat,  L. Mille-Hamard,  B. Petit,  J. P. Koralsztein
  • Faculté des Sciences du Sport, Université Lille 2, Centre de Médecine du Sport CCAS, Paris, France
Further Information

Publication History

Publication Date:
31 December 1999 (online)

The purpose of this study was to compare the effect of two different types of cyclic severe exercise (running and cycling) on the V˙O2 slow component. Moreover we examined the influence of cadence of exercise (freely chosen [FF] vs. low frequency [LF]) on the hypothesis that: 1) a stride frequency lower than optimal and 2) a pedalling frequency lower than FF one could induce a larger and/or lower V˙O2 slow component. Eight triathletes ran and cycled to exhaustion at a work-rate corresponding to the lactate threshold + 50 % of the difference between the work-rate associated with V˙O2max and the lactate threshold (Δ 50) at a freely chosen (FF) and low frequency (LF:- 10 % of FF). The time to exhaustion was not significantly different for both types of exercises and both cadences (13 min 39 s, 15 min 43 s, 13 min 32 s, 15 min 05 s for running at FF and LF and cycling at FF and LF, respectively). The amplitude of the V˙O2 slow component (i.e. difference between V˙O2 at the last and the 3rd min of the exercise) was significantly smaller during running compared with cycling, but there was no effect of cadence. Consequently, there was no relationship between the magnitude of the V˙O2 slow component and the time to fatigue for a severe exercise (r = 0.20, p = 0.27). However, time to fatigue was inversely correlated with the blood lactate concentration for both modes of exercise and both cadences (r = - 0.42, p = 0.01). In summary, these data demonstrate that: 1) in subjects well trained for both cycling and running, the amplitude of the V˙O2 slow component at fatigue was larger in cycling and that it was not significantly influenced by cadence; 2) the V˙O2 slow component was not correlated with the time to fatigue. If the nature of the linkage between the V˙O2 slow component and the fatigue process remains unclear, the type of contraction regimen depending on exercise biomechanic characteristics seems to be determinant in the V˙O2 slow component phenomenon for a same level of training.

References

  • 1 Ahlquist L E, Bassett D R, Sufit R, Nagle F J, Thomas D P. The effect of pedalling frequency on glycogen depletion rates in type I and II quadriceps muscle fibers during submaximal cycling exercise.  Eur J Appl Physiol. 1992;  65 360-4
  • 2 Astrand P O, Saltin B. Oxygen uptake during the first minutes of heavy muscular exercise.  J Appl Physiol. 1961;  16 971-6
  • 3 Astrand P O, Rodahl K. Textbook of work physiology. Physiological bases of exercise.  New York:; McGraw-Hill publisher, 1986: 336
  • 4 Aunola S, Rusko H. Reproducibility of aerobic and anaerobic thresholds in 20 - 50 year old men.  Eur J Appl Physiol. 1984;  53 260-6
  • 5 Barstow T J, Mole P A. Linear and nonlinear characteristics of oxygen uptake kinetics during heavy exercise.  J Appl Physiol. 1991;  71 2099-106
  • 6 Barstow T J, Jones A M, Nguyen P H, Casaburi R. Influence of muscle fiber type and pedal frequency on oxygen uptake kinetics of heavy exercise.  J Appl Physiol. 1996;  81 1642-50
  • 7 Billat V L, Binsse V, Haouzi P, Koralsztein J P. High level runners are able to maintain a V˙O2 steady-state below V˙O2max in an all-out run over their critical velocity.  Arch Physiol Bioch. 1998;  107 1-8
  • 8 Billat V L, Richard R, Binsse V M, Koralsztein J P, Haouzi P. V˙O2 slow component for a severe exercise depends on type of exercise and is not correlated with time to fatigue.  J Appl Physiol. 1998;  85 2118-2124
  • 9 Capelli C, Antonutto G, Zamparo P, Girardis M, di Prampero P E. Effects of prolonged cycle ergometer exercise on maximal muscle power and oxygen uptake in humans.  Eur J Appl Physiol. 1993;  66 189-95
  • 10 Cavagna G A, Saibene F P, Margaria R. Mechanical work in running.  J Appl Physiol. 1964;  19 249-56
  • 11 Cavagna G A, Kaneko M. Mechanical work and efficiency in level walking and running.  J Physiol. 1977;  268 467-81
  • 12 Cavanagh P R, Williams K R. The effect of stride length variation on oxygen uptake during distance running.  Med Sci Sports Exerc. 1982;  14 30-5
  • 13 Cavagna G A, Willems P A, Franzetti P, Detrembleur C. The two power limits conditioning step frequency in human running.  J Physiol. 1991;  437 95-108
  • 14 Cerretelli P, Veicsteinas A, Fumagalli M, Dell'orto L. Energetics of isometric exercise in man.  J Appl Physiol. 1976;  41 136-41
  • 15 Costill D L. Metabolic responses during distance running.  J Appl Physiol. 1970;  28 251-5
  • 16 Coyle E F, Labros S, Sidossis S, Horowitz J F, Beltz J D. Cycling efficiency is related to the percentage of type I muscle fibers.  Med Sci Sports Exerc. 1993;  25 1269-74
  • 17 Farrel P E, Wilmore J H, Coyle E F, Billing J E, Costill D L. Plasma lactate accumulation and distance running performance.  Med Sci Sports Exerc. 1979;  11 338-44
  • 18 Gaesser G A. O2 uptake during high intensity cycling at slow and fast cadences (abstract).  Physiologist. 1992;  35 210
  • 19 Gaesser G A. Influence of training and catecholamines on exercise V˙O2 response.  Med Sci Sports Exerc. 1994;  26 782-8
  • 20 Gaesser G A, Poole D. The slow component of oxygen uptake kinetics in humans.  Exerc Sport Sci Rev. 1996;  24 35-70
  • 21 Harris R C, Sahlin K, Hultman E. Phosphagen and lactate contents of m. quadriceps of man after exercise.  J Appl Physiol. 1977;  43 852-7
  • 22 Horowitz J F, Sidossis L S, Coyle E F. High efficiency of type I muscle fibers improves performance.  Int J Sports Med. 1991;  15 152-7
  • 23 Jones L A. The senses of effort and force during fatiguing contractions. In: Gandevia SC et al. (eds). Fatigue. Neural and Muscular Mechanisms.  New York:; Plenum Press, 1995: 305-13
  • 24 Mahler M. Kinetics and control of oxygen consumption in skeletal muscle. In: Cerretelli P, Whipp BJ (eds). Exercise Bioenergetics and Gas Exchange.  Elsevier/North-Holland:; Biomedical Press publishers, 1980: 53-66
  • 25 Marsh A P, Martin P E. The association between cycling experience and preferred and most economical cadences.  Med Sci Sports Exerc. 1993;  24 782-8
  • 26 Morgan D, Martin P, Craib M, Caruso C, Clifton R, Hopewell R. Effect of step length optimization on the aerobic demand of running.  J Appl Physiol. 1994;  77 245-51
  • 27 Moritani T, Nagata A, De Vries H A, Muro M. Critical power as a measure of physical working capacity and anaerobic threshold.  Ergonomics. 1981;  24 339-50
  • 28 Nagle F J, Robinhold D, Howley E, Daniels J, Baptista G, Stoedefalke K. Lactic acid accumulation during running at submaximal aerobic demands.  Med Sci Sports Exerc. 1970;  2 182-6
  • 29 Newsholme E A, Blomstrand E, Ekblom B. Physical and mental fatigue: metabolic mechanisms and importance of plasma amino acids.  Br Med Bull. 1992;  48 477-95
  • 30 Okita K, Nishijima H, Yonezawa K, Ohtsubo M, Hanada A, Kohya T, Murakami T, Kitabatake A. Skeletal muscle metabolism in maximal bicycle and treadmill exercise distinguished by using in vivo metabolic freeze method and phosphorus-31 magnetic resonance spectroscopy in normal men.  Am J Cardiol. 1998;  81 106-9
  • 31 Patterson R P, Moreno M I. Bicycle pedalling forces as a function of pedalling rate and power output.  Med Sci Sports Exerc. 1990;  22 512-6
  • 32 Poole D C, Ward S A, Gardner G W, Whipp B J. Metabolic and respiratory profile of the upper limit for prolonged exercise in man.  Ergonomics. 1988;  31 1265-79
  • 33 Poole D C, Schaffartzik W, Knight D R, Derion T, Kennedy B, Guy H J, Prediletto R, Wagner P D. Contribution of exercising legs to the slow component of oxygen uptake kinetics in humans.  J Appl Physiol. 1991;  71 1245-53
  • 34 Poole D C, Barstow T J, Gaesser G A, Willis W T, Whipp B J. V˙O2 slow component: physiological and functional significance.  Med Sci Sports Exerc. 1994;  26 1354-8
  • 35 Roston W L, Whipp B J, Davis J A, Cunningham D A, Effros R M, Wasserman K. Oxygen uptake kinetics and lactate concentration during exercise in humans.  Am Rev Respir Dis. 1987;  135 1080-4
  • 36 Sjödin B, Jacobs I. Onset of blood lactate accumulation and marathon running performance.  Int J Sports Med. 1981;  2 23-6
  • 37 Stringer W S, Wasserman K, Casaburi R, Porszasz J, Maehara K, French W. Lactic acidosis as facilitator of oxyhemoglobin dissociation during exercise.  J Appl Physiol. 1994;  76 1462-7
  • 38 Takaishi T, Yasuda Y, Ono T, Moritani T. Optimal pedalling rate estimated from neuromuscular fatigue for cyclists.  Med Sci Sports Exerc. 1996;  28 1492-7
  • 39 Takaishi T, Yamamoto T, Ono T, Ito T, Moritani T. Neuromuscular, metabolic, and kinetic adaptations for skilled pedalling performance in cyclists.  Med Sci Sports Exerc. 1998;  30 442-9
  • 40 Vollestad N K, Bolm P CS. Effect of varying exercise intensity on glycogen depletion in human muscle fibers.  Acta Physiol Scand. 1985;  125 395-405
  • 41 Wasserman K, Hansen J E, Sue D Y. Facilitation of oxygen consumption by lactic acidosis during exercise.  News Physiol Sci. 1991;  6 29-34
  • 42 Whipp B J. The slow component of O2 uptake kinetics during heavy exercise.  Med Sci Sports Exerc. 1994;  26 1319-26
  • 43 Whipp B J, Wasserman K. The efficiency of muscular work.  J Appl Physiol. 1969;  26 644-8
  • 44 Wilkie D R. The relation between force and velocity in human muscle.  J Physiol. 1950;  110 249-80
  • 45 Willis W T, Jackman M R. Mitochondrial function during heavy exercise.  Med Sci Sports Exerc. 1994;  26 1347-54

Ph.D. Véronique Billat,

Centre de Médecine du Sport CCAS

2, avenue Richerand

F-75010 Paris

France

Phone: +33 (1) 42020818

Fax: +33 (1) 42392083

Email: Veronique.Billat@Wanadoo.fr