Fortschr Neurol Psychiatr 2000; 68(7): 301-312
DOI: 10.1055/s-2000-11788
ORIGINALARBEIT
Georg Thieme Verlag Stuttgart · New York

Störungen im Phospholipidmetabolismus als mögliche pathogenetische Faktoren der Schizophrenie

Zusammenfassung aktueller Befunde und kritische WürdigungS. Smesny, H. P. Volz, S. Riehemann, H. Sauer
  • Klinik für Psychiatrie der Friedrich-Schiller-Universität Jena (Direktor: Prof. Dr. H. Sauer)
Further Information

Publication History

Publication Date:
31 December 2000 (online)

Zusammenfassung:

Seit einigen Jahren wird der Lipidstoffwechsel schizophrener Patienten anhand von Enzymanalysen und Bestimmungen von Membransynthese- bzw. -abbaustoffen untersucht. Bisher wurden hierzu sowohl Messungen an Blutproben als auch an verschiedenen Zellpopulationen durchgeführt. In Analogie dazu lassen sich mittels neuerer Untersuchungsverfahren, wie der 31P-Magnetresonanz-Spektroskopie (31P-MRS), auch nichtinvasiv in vivo derartige Membranstoffwechselparameter bestimmen.

Im Rahmen der Membranphospholipid-Hypothese der Schizophrenie werden Arachidonsäuredefizite peripherer Zellmembranen, Phosphodiesterturnover im Gehirn, Phospholipase A2 (PLA2)-Aktivitätssteigerung im Serum und in Blutzellen, verminderte Niacin-Sensibilität und Abnormitäten des PLA2-Gens bei Schizophrenen diskutiert. Dennoch sind die Zusammenhänge zwischen diesen und psychopathologischen Befunden bisher spekulativ. Außerdem ist es notwendig, die Übertragbarkeit der peripheren Messergebnisse auf den Stoffwechsel im zentralen Nervensystem (ZNS) selbst zu belegen.

Ausgehend von nicht neuronalen Enzym- und Stoffwechselanalysen anderer Arbeitsgruppen sollen aktuelle Ergebnisse im Zusammenhang mit eigenen 31P-MR-spektroskopischen Arbeiten zusammenfassend dargestellt werden, um Übereinstimmungen und Zusammenhänge zwischen zentralen und peripheren Untersuchungstechniken aufzuzeigen und neue Therapieansätze für die Schizophrenie zu eruieren.

Disturbances of Phospholipidmetabolism - Possible Pathogenic Factors in Schizophrenia. Survey and Discussion of Current Findings:

During the last few years analyses of the lipidmetabolism have been performed on schizophrenic patients. Anabolic and katabolic metabolite-concentrations from blood and cell samples have been measured. By means of new investigation techniques, such as 31P-magnetic-resonance-spectroscopy, it is nowadays even possible to determine membrane metabolites non-invasively in vivo.

Arachidonic acid deficits in peripheral cell membranes, turnover of phosphodiesters in the brain, increased phospholipase A2 (PLA2)-activity in serum and blood cells, disturbed niacin-response and abnormalities of the PLA2-gene are summarised as phospholipid-membrane-hypothesis of schizophrenia. Although there is some evidence for correlations between those findings and psychotic symptoms, the connection to the pathogenesis of schizophrenia still has speculative character. Furthermore it has to be confirmed that peripheral biochemical findings acquired in schizophrenics are transferable to the metabolism of the central nervous system.

Actual results of enzyme and metabolite measurements reported in literature and current findings of our own 31P-MR-spectroscopic studies are surveyed and summarised. To point out possible connections between the phospholipid-metabolism of the central nervous system and of peripheral blood-cells, systemic approaches are considered.

Literatur

  • 1 Anand-Srivastava M B, Johnson R A. Role of phospholipids in coupling of adenosine and dopamine receptors to striatal adenylate cyclase.  J Neurochem. 1981;  36 1819-1828
  • 2 Buchli R, Martin E, Boesiger P, Rumpel H. Developmental Changes of Phosphorus Metabolite Concentrations in the Human Brain - A 31P Magnetic Resonance Spectroscopy Study in vivo.  Pediatric Research. 1994;  35 431-435
  • 3 Burgess J R, Kuo C F. Increased calcium-independent phospholipase A2 activity in vitamin E and selenium-deficient rat lung, liver, and spleen cytosol is time-dependent and reversible.  J Nutr Biochem. 1996;  7 366-374
  • 4 Cadet J L, Hu M, Jacksorl-Lewis V. Behavioral and biochemical effects of intranigral injection of phospholipase-A2 .  Biol Psychiatry. 1989;  26 106-110
  • 5 Calabrese G, Deicken R F, Merrin E L, Schoenfeld F, Weiner M W. 31Phosphorus magnetic resonance spectroscopy of the temporal lobes in schizophrenia.  Biol Psychiatry. 1992;  32 26-32
  • 6 Christensen O, Christensen E. Fat consumption and schizophrenia.  Acta Psychiatr Scand. 1988;  78 587-591
  • 7 Clark J D, Lin L L, Kriz R W, Ramesha C S, Sultzman L A, Lin A Y, Milona N, Knopf J L. A novel arachidonic acid-selective cytosolic PLA2 contains a Ca2+-dependent translocation domain with homology to PKC and GAP.  Cell. 1991;  65 1043-1051
  • 8 Cupillard L, Koumanov K, Mattei M G, Lazdunski M, Lambeau G. Cloning, chromosomal mapping, and expression of a novel human secretory phospholipase A2 .  J Biol Chem. 1997;  272 15745-15752
  • 9 Deicken R F, Calabrese G, Merrin E L, Meyerhoff D J, Dillon W P, Weiner M W, Fein G. 31Phosphorus magnetic resonance spectroscopy of the frontal and parietal lobes in chronic schizophrenia.  Biol Psychiatry. 1994;  36 503-510
  • 10 Deicken R F, Calabrese G, Merrin E L, Fein G, Weiner M W. Basal ganglia phosphorous metabolism in chronic schizophrenia.  Am J Psychiatry. 1995a;  152 126-129
  • 11 Deicken R F, Calabrese G, Merrin E L, Vinogradov S, Fein G, Weiner M W. Asymmetry of temporal lobe phosphorus metabolism in schizophrenia: A 31-Phosphorus magnetic resonance spectroscopic imaging study.  Biol Psychiatry. 1995b;  38 279-286
  • 12 Deicken R F, Weiner M W, Fein G. Decreased temporal lobe phosphomonoesters in bipolar disorder.  J Affect Disord. 1995c;  33 195-199
  • 13 Deicken R F, Fein G, Weiner M W. Abnormal frontal lobe phosphorous metabolism in bipolar disorder.  Am J Psychiatry. 1995d;  152 915-918
  • 14 Deickert J, Nothen M M, Bryant S P, Schuffenhauer S, Schonfield P R, Spurr N K, Propping P. Mapping of the human adenosine A2a receptor gene: relationship to potential schizophrenia loci on chromosome 22q and exclusion from the CATCH 22 region.  Human Genet. 1997;  99 326-328
  • 15 Dennis E A. The growing phospholipase A2 superfamily of signal transduction enzymes.  Trends Biochem Sci. 1997;  11 1-2
  • 16 Edgar A D, Freysz L, Mandel P, Horrocks L A. Phospholipid metabolism in low and high density C6 cells.  Trans Am Soc Neurochem. 1980;  11 100
  • 17 Fiedler P, Wolkin A, Rotrosen J. Niacin-induced flush as a measure of prostaglandin activity in alcoholics and schizophrenics.  Biol Psychiatry. 1986;  21 1347-1350
  • 18 Fischer S, Kissling W, Kuß H J. Schizophrenic patients treated with high dose phenothiazine or thioxanthene become deficient in polyunsaturated fatty acids in their thrombocytes.  Biochem Pharmacol. 1992;  44 317-323
  • 19 Fujimoto T, Nakano T, Hokazono Y, Asakura T, Tsuji T. Study of chronic schizophrenics using 31P magnetic resonance chemical shift imaging.  Acta Psychiatr Scand. 1992;  86 455-462
  • 20 Fukuzako H, Takeuchi K, Ueyama K, Fukuzako T, Hokazono Y, Hirakawa K, Yamada K, Hashiguchi T, Takigawa M, Fujimoto T. 31P magnetic resonance spectroscopy of the medial temporal lobe of schizophrenic patients with neuroleptic-resistant marked positive symptoms.  Eur Arch Psychiatry Neurosci. 1994;  244 236-240
  • 21 Gattaz W F, Köllisch M, Thuren T, Virtanen J A, Kinnunen P KJ. Increased plasma phospholipase-A2 activity in schizophrenic patients: reduction after neuroleptic therapy.  Biol Psychiatry. 1987;  22 421-426
  • 22 Gattaz W F, Hübner C V, Nevalainen T J, Thuren T, Kinnunen P KJ. Increased serum phospholipase-A2activity in schizophrenia: a replication study.  Biol Psychiatry. 1990;  28 495-501
  • 23 Gattaz W F, Schmitt A, Maras A. Increased platelet phospholipase A2 activity in schizophrenia.  Schizophr Res. 1995;  16 1-6
  • 24 Gattaz W F, Brunner J. Phospholipase A2 and the hypofrontality hypothesis of schizophrenia.  Prostaglandins Leukot Essent Fatty Acids. 1996;  55 109-113
  • 25 Glen A L, Glen E MT, Horrobin D F, Vaddadi K S, Spellman M, Morse-Fisher N, Ellis K, Skinner F S. A red cell membrane abnormality in a subgroup of schizophrenic patients: evidence for two diseases.  Schizoph Res. 1994;  12 53-61
  • 26 Glen A IM, Cooper S J, Rybakowski K, Vaddadi K, Brayshaw N, Horrobin D F. Membran fatty acids, niacin flushing and clinical parameters.  Prostaglandins, Leukot and Essential Fatty Acids. 1996;  55 9-15
  • 27 Gray N CC, Strickland K P. On the specificity of a phospholipase A2 from the 106 000 × g pellet of bovine brain.  Lipids. 1982;  17 91-96
  • 28 Hibbeln J R, Palmer J W, Davis J M. Are disturbances in lipid-protein interactions by phospholipase A2 a predisposing factor in affective illness.  Biol Psychiatry. 1989;  25 945-961
  • 29 Hitzemann R, Hirschowitz J, Garver D. Membrane abnormalities in the psychoses and affective disorders.  J Psychiatr Res. 1984;  18 319-326
  • 30 Horrobin D F. Schizophrenia as a prostaglandin deficiency disease.  Lancet. 1977;  1 936-937
  • 31 Horrobin D F, Manku M S, Morse-Fisher N. Essential fatty acids in plasma phospholipids in schizophrenics.  Biol Psychiatr. 1989;  25 562-568
  • 32 Horrobin D F, Mallku M S, Hillman H, Iain A, Glen M. Fatty acid levels in the brains of schizophrenics and normal controls.  Biol Psychiatr. 1991;  30 795-805
  • 33 Horrobin F D. The membrane phospholipid hypothesis as a biochemical basis for the neurodevelopmental concept of schizophrenia.  Schizoph Res. 1998;  30 193-208
  • 34 Hudson C J, Kennedy J L, Gotowiec A, Lin A, King N, Gojtan K, Macciardi F, Skorecki K, Meltzer H Y, Warsh J J, Horrobin D F. Genetic variant near cytosolic phospholipase A2 associated with schizophrenia.  Schizophrenia Research. 1996;  21 111-116
  • 35 Hudson C J, Lin A, Cogan S, Cashman F, Warsh J J. The niacin challenge test: clinical manifestation of altered transmembrane signal transduction in schizophrenia.  Biol Psychiatry. 1997;  41 507-513
  • 36 Hudson C J, Gotowiec A, Seeman M, Warsh J J, Ross B M. Clinical Subtyping Reveals Significant Differences in Calcium-Dependent Phospholipade A2 Activity in Schizophrenia.  Biol Psychiatry. 1999;  46 401-405
  • 37 Hübner G, Volz H P, Riehemann S, Wenda B, Rößger G, Rzanny R, Sauer H. Lateralization Effects of Image Guided 31P Magnetoresonance-Spectroscopic Parameters in the Frontal Lobe of Schizophrenics and Healthy Controls.  Proc SPIE. 1999;  3660 im Druck
  • 38 Kato T, Shiori T, Murashita J, Hamakawa H, Inubushi T, Takahashi S. Phosphorous-31 magnetic resonance spectroscopy and ventricular enlargement in bipolar disorder.  Psychiatry Res Neuroimaging. 1994;  55 41-50
  • 39 Kennedy S P, Becker E L. Ectophospholipase A2 activity of the rabbit peritoneal neutrophil.  Int Arch Allergy Appl Immunol. 1987;  83 238-246
  • 40 Kunin R A. The Action of Aspirins in Preventing Niacin Flush and its Relevance to the Anti-Schizophrenic Action of Megadose Niacin.  Journal of Orthomolecular Psychiatry. 1976;  5 89-100
  • 41 Kuo C F, Cheng S, Burgess J R. Deficiency of vitamin E and selenium enhances calcium independend phospholipase A2 activity in rat lung and liver.  J Nutrition. 1995;  125 1419-1429
  • 42 Lautin A, Mandio C D, Segarnick D J, Wod L, Mason M F, Rotrosen J. Red cell phospholipids in schizophrenia.  Life Sci. 1982;  31 3051-3056
  • 43 Mahadik S P, Scheffer R E. Oxidative injury and potential use of antioxidants in schizophrenia.  Prostaglandins Leukot Essent Fatty Acids. 1996;  55 45-54
  • 44 Mahadik S P, Mukherjee S, Scheffer R, Correnti E E, Mahadik J S. Elevated plasma lipid peroxides at the onset of nonaffective psychosis.  Biol Psychiatry. 1998;  43 674-679
  • 45 Meyer A H, Schmuck K, Morel C, Wishart W, Lubbert H, Engels L. Localization of a gene coding for the phospholipase A2-L subtype (PLA2L) to human chromosome 8q24-qter.  Genomics. 1996;  38 435-437
  • 46 Morrow J D, Parsons W G, Roberts L J. Release of markedly increased quantities of prostaglandin D2 in vivo in humans following the administration of nicotinic acid.  Prostaglandins. 1989;  38 236-274
  • 47 Morrow J D, Awad J A, Oates J A, Roberts L J. Identification of skin as a major site of prostaglandin D2 release following oral administration of niacin in humans.  J Invest Dermat. 1992;  98 812-815
  • 48 Mukerjee S, Mahadik S P, Scheffer R, Correnti E E, Kelkar H. Impaired antioxidant defense at the onset of psychosis.  Schizophr Res. 1996;  19 19-26
  • 49 Murakami M, Kambe T, Shimbara S, Kudo I. Functional coupling between various phospholipase A2s and cyclooxygenases in immediate and delayed prostanoid biosynthetic pathways.  J Biol Chem. 1999;  274 3103-3115
  • 50 Noponen M, Sanfilipo M, Samanich K, Ryer H, Ko G, Angrist B, Wolkin A, Duncan E, Rotrosen J. Elevated PLA2-activity in schizophrenics and other psychiatric disorders.  Biol Psychiatry. 1993;  3 641-649
  • 51 O'Callaghan E, Redmond O, Ennis R, Stack J, Kinsella A, Ennis J T, Larkin C, Waddington J L. Initial investigation of the left temporoparietal region in schizophrenia by 31P magnetic resonance spectroscopy.  Biol Psychiatry. 1991;  29 1149-1152
  • 52 Oliveira C R, Duarte E P, Carvalho A P. Effect of phospholipase digestion and lysophorphatidylcholine on dopamine receptor binding.  J Neurochem. 1984;  43 455-465
  • 53 Pangerl A M, Steudle A, Jaroni H W, Rüfer R, Gattaz W F. Increased platelet membrane lysophosphatidylcholine in schizophrenia.  Biol Psychiatry. 1991;  30 837-840
  • 54 Peet M, Laugharne J DE, Mellor J, Ramchand C N. Essential fatty acid deficiency in erythrocyte membranes from chronic schizophrenic patients, and the clinical effects of dietary supplementation.  Prostaglandins Leukot Essent Fatty Acids. 1996;  5 71-75
  • 55 Peet M, Ramchand C N, Lee J, Telang S D, Vankar G K, Shah S, Wei J. Association of the Ban I dimorphic site at the human cytosolic phospholipase A2 gene with schizophrenia.  Psychiatr Genet. 1998;  8 191-192
  • 56 Pettegrew J W, Keshavan M S, Panchalingam K, Strychor S, Kaplan D B, Tretta M G, Allen M. Alterations in brain high-energy phosphate and membrane phospholipid metabolism in first-episode drug-naive schizophrenics.  Arch Gen Psychiatry. 1991;  48 563-568
  • 57 Pontus K A, Forsell L, Kennedy B P, Claesson H E. The human calcium-independent phospholipase A2 gene - Multiple enzymes with distinct properties from a single gene.  Eur J Biochem. 1999;  262 575-585
  • 58 Potwarka J J, Drost D J, Williamson P C, Carr T, Canaran G, Rylett W J, Neufeld R WJ. A 1H-Decoupled 31P Chemical Shift Imaging Study of Medicated Schizophrenic Patients and Healthy Controls.  Biol Psychiatry. 1999;  45 687-693
  • 59 Puri B K, Richardson A J. Sustained Remission of Positive and Negative Symptoms of Schizophrenia Following Treatment with Eicosapentaenoic Acid.  Arch Gen Psychiatry. 1998;  55 188-189
  • 60 Ramchand C N, Davies J I, Tesman R L, Griffiths I C, Peet M. Reduced susceptibility to oxidative damage of erythrocyte membranes from medicated schizophrenic patients.  Prostagl Leukot Essent Fatty Acids. 1996;  55 27-31
  • 61 Riehemann S, Volz H P, Wenda B, Hübner G, Rößger G, Rzanny R, Sauer H. Frontal Lobe In Vivo 31P-MRS Reveals Gender Differences in Healthy Controls, Not in Schizophrenics.  NMR in Biomed. 1999;  im Druck
  • 62 Ross B M, Hudson C, Erlich J, Warsh J J, Kish S J. Increased phospholipid breakdown in schizophrenia. Evidence for the involvement of a calcium-independent phospholipase A2 .  Arch Gen Psychiatry. 1997;  54 487-494
  • 63 Ross B M, Turenne S, Moszczynska A, Warsh J J, Kish S J. Differential alteration of phospholipase A2 activities in brain of patients with schizophrenia.  Brain Research. 1999;  821 407-413
  • 64 Rudin D O. The major psychoses and neuroses as omega-3 essential fatty acid deficiency syndrome: substrate pellagra.  Biol Psychiatr. 1981;  16 837-848
  • 65 Rybakowski J, Weterle R. Niacin test in schizophrenia and affective illness.  Biol Psychiatry. 1991;  29 834-836
  • 66 Sengupta N, Datta S C, Sengupta D. Platelet and erythrocyte membrane lipid and phospholipid patterns in different types of mental patients.  Biochem Med. 1981;  25 267-275
  • 67 Shioiri T, Kato T, Inubushi T, Murashita J, Takahashi S. Correlations of phospho-monoesters measured by 31P-MRS in the frontal lobes and negative symptoms in schizophrenia.  Psychiatry Res. 1994;  55 223-235
  • 68 Stanley J A, Williamson P C, Drost D J, Carr T J, Rylett R J, Morrison-Stewart S, Thomson R T. Membrane phospholipid metabolism and schizophrenia: An in vivo 31P-MR spectroscopy study.  Schizophr Res. 1994;  13 209-215
  • 69 Stanley J A, Williamson P C, Drost D J, Carr T J, Rylett J, Malla A, Thomson R T. An in vivo study of the prefrontal cortex of schizophrenic patients at different stages of illness via phosphorus magnetic resonance spectroscopy.  Arch Gen Psychiatry. 1995;  52 399-406
  • 70 Tay A, Squire J A, Goldberg H, Scorecki K. Assignment of the human prostaglandin-endoperoxide synthase 2 (PTGS2) gene to 1q25 by fluorescence in situ hybridization.  Genomics. 1993;  23 718-719
  • 71 Tay A, Simon J S, Squire J, Hamel K, Jacob H J, Skorecki K. Cytosolic phospholipase A2 gene in human and rat: chromosomal lokalisation and polymorphic markers.  Genomics. 1995;  26 138-141
  • 72 Terwilliger J D, Ott J. A Haplotype-Based ‘Haplotype Relative Risk’. Approach to Detecting Allelic Associations.  Hum Hered. 1992;  42 337-346
  • 73 Tischfeld J A, Xia Y R, Shih D M, Klisak I, Chen J, Engle S J, Siakotos A N, Winstead M V, Seilhamer J J, Allamand V, Gyapay G, Lusis A J. Low-molecular-weight, calcium-dependent phospholipase A2 genes are linked and map to homologues chromosome regions in mouse and human.  Genomics. 1996;  32 328-333
  • 74 Vaddadi K S, Courtney P, Gilleard C J, Manku M S, Horrobin D F. A double-blind trial of essential fatty acid supplementation in patients with tardive dyskinesia.  Psychiatr Res. 1989;  27 313-323
  • 75 Van Kuijk F JGM, Sevanian A, Handelman G J, Dratz E A. A new role for phospholipase A2: protection of membranes from lipid peroxidation damage.  Trends Biochem Sci. 1987;  12 31-34
  • 76 Volz H P, Gasser C, Häger F, Rzanny R, Mentzel H J, Kreitschmann-Andermahr I, Kaiser W A, Sauer H. Brain activation during cognitive stimulation with the Wisconsin Card Sorting Test - a functional MRI study of healthy volunteers and schizophrenics.  Psychiatry Res Neuroimag. 1997a;  75 145-158
  • 77 Volz H P, Rzanny R, Rößger G, Hübner G. Decreased energy demanding processes in the frontal lobes of schizophrenics due to neuroleptics? A 31P-magnetoresonance spectroscopic study.  Psychiatry Res Neuroimag. 1997b;  76 123-129
  • 78 Volz H P, May S, Hegewald H, Preußler B, Hajek M, Kaiser W A, Sauer H. 31P-Magnetic Resonance Spectroscopy in the Dorsolateral Prefrontal Cortex of Schizophrenics with a Volume Selective Technique - Preliminary findings.  Biol Psychiatry. 1997c;  41 644-648
  • 79 Volz H P, Rzanny R, Rößger G, Hübner G, Kreitschmann-Andermahr I, Kaiser W A, Sauer H. 31Phosphorus Magnetic Resonance Spectroscopy of the Dorsolateral Prefrontal Region in Schizophrenics - A Study Including 50 Patients and Thirty-Six Controls.  Biol Psychiatry. 1998a;  44 399-404
  • 80 Volz H P, Rzanny R, Riehemann S, May S, Hegewald H, Preussler B, Hübner G, Kaiser W A, Sauer H. 31Phosphorus Magnetic Resonance Spectroscopy in the Frontal Lobe of Major Depressed Patients.  Eur Arch Psychiatry Clin Neurosci. 1998b;  248 289-295
  • 81 Volz H P, Rößger G, Riehemann S, Hübner G, Maurer I, Wenda B, Rzanny R, Kaiser W A. Increase of phosphodiesters during neuroleptic treatment of schizophrenics a longitudinal 31P-magnetic resonance spectroscopy study.  Biol Psychiatry. 1999;  im Druck
  • 82 Ward P E, Sutherland J, Glen E MT, Glen A IM. Niacin skin flush in schizophrenia: a preliminary report.  Schizophrenia Research. 1998;  29 269-274
  • 83 Wenda B, Riehemann S, Volz H P, Hübner G, Rößger G, Rzanny R, Sauer H. Lateralization of 31P-MRS Parameters in the Frontal Lobes of Healthy Controls and Schizophrenics.  European Arch Psych Clin Neurosci. 1998;  248 (Suppl. 2) 137
  • 84 Wilkin J K. Chlorpropamide-alkohol flushing, malar thermal circulation index, and baseline malar temperature.  Metabolism. 1982a;  31 948-954
  • 85 Wilkin J K, Wilkin O, Kapp R, Donachi R, Chernosky M, Bruckner J. Aspirin blocks nicotinic acid-induced flushing.  Clin Pharmacol Ther. 1982b;  31 478-482
  • 86 Wilkin J K, Fortner G, Reinhart L A. et al . Prostaglandins and nicotinate-provoked increase in cutaneous blood flow.  Clin Pharmacol Ther. 1985;  38 273-277
  • 87 Wilson D W, Douglass A B. Niacin skin flush is not diagnostic of schizophrenia.  Biol Psychiatry. 1986;  21 974-977
  • 88 Wolkin A, Jordan B, Peselow E, Rubinstein M, Retrosen J. Essential fatty acid supplementation in tardive dyskinesia.  Am J Psychiatr. 1986;  143 912-914
  • 89 Yao J K, Yasaei P, van Kammen D P. Increased turnover of platelet phosphatidylinositol in schizophrenia.  Prostagl Leukot Essent Fatty Acids. 1992;  46 39-46
  • 90 Yao J K, van Kammen D P, Welker J A. Red blood cell membrane dynamics in schizophrenia. II. Fatty acid composition.  Schizophr Res. 1994;  13 217-226
  • 91 Yoshihara Y, Watanabe Y. Translocation of phospholipase A2 from cytosol to membranes in rat brain induced by calcium ions.  Biochem Biophys Res Commun. 1990;  170 484-490

Dr. med S Smesny

Klinik für Psychiatrie der FSU Jena

Philosophenweg 3
07740 Jena

Email: E-mail: smesny@landgraf.med.uni-jena.de