Int J Sports Med 2000; 21(1): 31-36
DOI: 10.1055/s-2000-8856
Physiology and Biochemistry
Georg Thieme Verlag Stuttgart ·New York

The Slow Component of O2 Uptake Kinetics During High-Intensity Exercise in Trained and Untrained Prepubertal Children

 P. Obert1 ,  C. Cleuziou1 ,  R. Candau2 ,  D. Courtex1 ,  A.-M. Leco 3 ,  P. Guenon3
  • 1 Laboratory of Exercise Physiology, Faculty of Sport Sciences, University of Orléans, Orléans, France
  • 2 Laboratory of Sports Sciences, Faculty of Sport Sciences, University of Montpellier, France
  • 3 Department of Respiratory Physiology, Regional Hospital Center, Orléans, France
Further Information

Publication History

Publication Date:
31 December 2000 (online)

The aim of the present study was to investigate the O2 uptake slow component in prepubertal children of different aerobic capacity during high intensity exercise. Twenty-three (12 well-trained, T and 11 untrained, U subjects) 10 - 13 year old prepubertal children took part in 3 tests: one incremental test to determine the maximal aerobic power (PMA) and anaerobic threshold (LAT); two constant-power tests performed at intensities corresponding to 80 %LAT and 90 %PMA. Oxygen uptake (V˙O2), heart rate, ventilation (V˙E) and lactate ([L]s) were evaluated during each test. A monoexponential + linear term model (starting after phase 1) was used to assess V˙O2 kinetics during both constant-power tests. Our results showed that a slow component, represented by the linear coefficient (S) of the mathematical model, was present during the 90 %PMA test only (S = 0.86 ± 0.48 ml × min-2 × kg-1 for the whole population). No relationships were found between either S and V˙E or [L]s, showing that, at least in prepubertal children, these factors play a minor role in the explanation for the V˙O2 slow component. The slow component contributed approximately to the same amount of the total V˙O2 response in both groups (T: 21.4 ± 8.0, U: 19.3 ± 3.9 %, ns). In conclusion, as previously described in adults, our data demonstrated the existence of a slow component in prepubertal children during high-intensity exercise. Moreover, this slow component was similar in trained and untrained children, exercising at the same relative intensity.

References

  • 1 Armon Y, Cooper D M, Flores R, Zanconato S, Barstow T J. Oxygen uptake dynamics during high-intensity exercise in children and adults.  J Appl Physiol. 1991;  70 841-848
  • 2 Barstow T J. Characterization of V˙O2 kinetics during heavy exercise.  Med Sci Sports Exerc. 1994;  26 1327-1334
  • 3 Barstow T J, Buchthal S, Zanconato S, Cooper D M. Muscles energetics and pulmonary oxygen uptake kinetics during moderate exercise.  J Appl Phyisol. 1994;  77 1742-1749
  • 4 Barstow T J, Casaburi R, Wasserman K. O2 uptake kinetics and O2 deficit as related to exercise intensity and blood lactate.  J Appl Physiol. 1993;  75 755-762
  • 5 Barstow T J, Molé P A. Linear and nonlinear characteristics of oxygen uptake kinetics during heavy exercise.  J Appl Physiol. 1991;  71 2099-2106
  • 6 Casaburi R, Storer T W, Ben-Dov I, Wasserman K. Effect of endurance training on possible determinants of V˙O2 during heavy exercise.  J Appl Phyisol. 1987;  62 199-207
  • 7 Cooper D M, Berry C, Lamarra N, Wasserman K. Kinetics of oxygen uptake and heart rate at onset of exercise in children.  J Appl Physiol. 1985;  59 211-217
  • 8 Gaesser G A, Poole D C. The slow component of oxygen uptake kinetics in humans.  Exerc Sport Sci Rev. 1996;  24 35-70
  • 9 Gaesser G A, Ward S A, Baum V C, Whipp B J. Effects of infused epinephrine on slow phase of O2 uptake kinetics during heavy exercise in humans.  J Appl Physiol. 1994;  77 2413-2419
  • 10 Hagberg J M, Mullin J P, Nagle F J. Oxygen consumption during constant-load exercise.  J Appl Physiol. 1978;  45 381-384
  • 11 Hebestreit H, Kriemler S, Hughson R L, Bar-Or O. Kinetics of oxygen at the onset of exercise in boys and men.  J Appl Physiol. 1999;  85 1833-1841
  • 12 Henson L C, Poole D C, Whipp B J. Fitness as a determinant of oxygen uptake response to constant-load exercise.  Eur J Appl Physiol. 1989;  59 21-28
  • 13 Macek M, Vavra J. The adjustment of oxygen uptake at the onset of exercise: a comparison between prepubertal boys and young adults.  Int J Sports Med. 1980;  1 75-77
  • 14 Paterson D H, Whipp B J. Asymetries of oxygen uptake transients at the on- and off-set of heavy exercise in humans.  J Physiol. 1991;  443 575-586
  • 15 Poole D C. Role of exercising muscle in slow component of V˙O2.  Med Sci Sports Exerc. 1994;  26 1335-1340
  • 16 Poole D C, Gladden L B, Kurdak S, Hogan M C. L-(+)-Lactate infusion into working dog gastrocnemius: no evidence lactate per se mediates V˙O2 slow component.  J Appl Physiol. 1994;  76 787-792
  • 17 Poole D C, Schaffartzik W, Knight D R, Derion T, Kennedy B, Guy H J, Prediletto R, Wagner P D. Contribution of exercising legs to the slow component of oxygen uptake kinetics in humans.  J Appl Physiol. 1991;  71 1245-1253
  • 18 Poole D C, Ward S A, Gardner W, Whipp B J. Metabolic and respiratory profile of the upper limit for prolonged exercise in man.  Ergonomics. 1988;  31 1265-1279
  • 19 Poole D C, Ward S A, Whipp B J. The effects of training on the metabolic and respiratory profile of high-intensity cycle ergometer exercise.  Eur J Appl Physiol. 1990;  59 421-429
  • 20 Reybrouck T, Weymans M, Stijns H, Knops J, van der Hauwaert I. Ventilatory anaerobic threshold in healthy children. Age and sex differences.  Eur J Appl Physiol. 1985;  54 278-284
  • 21 Roston W L, Whipp B J, Davis J A, Cunningham D A, Effros R M, Wasserman K. Oxygen uptake kinetics and lactate concentration during exercise in humans.  Am Rev Respir Dis. 1987;  135 1080-1084
  • 22 Scheen A, Juchmes J, Cession-Fossion A. Critical analysis of the “anaerobic threshold” during exercise at constant work-loads.  Eur J Appl Physiol. 1981;  46 367-377
  • 23 Shinohara M, Moritani T. Increase in neuromuscular activity and oxygen uptake during heavy exercise.  Ann Physiol Anthropol. 1992;  11 257-262
  • 24 Stringer W K, Wasserman K, Casaburi R, Porszasz J, Maehara K, French W. Lactic acidosis as a facilitator of oxyhemoglobin dissociation during exercise.  J Appl Physiol. 1994;  76 1462-1467
  • 25 Tanner J M. Growth at adolescence. Oxford; Blackwell Scientific 1962
  • 26 Wasserman K, Hansen J E, Sue D Y. Facilitation of oxygen consumption by lactic acidosis during exercise.  News Physiol Sci. 1991;  1 29-34
  • 27 Wasserman K B, Whipp B J, Davis J A. Respiratory physiology of exercise: metabolism, gas exchange and ventilatory control. In: Widdicombe JG (ed) Respiratory Physiology III (Int Rev Physiol Ser). Baltimore, MD; University Park 1981 23
  • 28 Whipp B J. The slow component of O2 uptake kinetics during heavy exercise.  Med Sci Sports Exerc. 1994;  26 1319-1326
  • 29 Whipp B J, Ward S A. Cardiopulmonary coupling during exercise.  J Exp Biol. 1982;  100 175-193
  • 30 Whipp B J, Ward S A. Pulmonary gas exchange kinetics during exercise: physiological inferences of model order and parameters.  J Therm Biol. 1993;  18 599-604
  • 31 Whipp B J, Ward S A, Lamarra N, Davis J A, Wasserman K. Parameters of ventilatory and gas exchange dynamics during exercise.  J Appl Physiol. 1982;  52 1506-1513
  • 32 Womack C J, Davis S E, Blumer J L, Barret E, Weltman A L, Gaesser G A. Slow component of O2 uptake during heavy exercise: adaptation to endurance training.  J Appl Physiol. 1995;  79 838-845
  • 33 Yoshida T, Suda Y, Takeuchi N. Endurance training regimen based on arterial blood lactate: effects on anaerobic threshold.  Eur J Appl Physiol. 1982;  49 223-230
  • 34 Zanconato S, Cooper D M, Armon Y. Oxygen cost and oxygen uptake dynamics and recovery with one minute of exercise in children and adults.  J Appl Physiol. 1991;  71 993-998

Dr. Philippe Obert

Laboratoire de Physiologie de L'Exercice Musculaire Faculté du Sport et de l'Education Physique Université d'Orléans

Rue de Vendôme

BP 6749

F-45067 Orléans

France

Phone: + 33-2.38.41.73.87

Fax: + 33-2.38.41.72.60

Email: Philippe.Obert@univ-avignon.fr