Horm Metab Res 2001; 33(2): 101-105
DOI: 10.1055/s-2001-12400
Original Clinical

© Georg Thieme Verlag Stuttgart · New York

Impaired Glucose Tolerance Without Hypertriglyceridemia Does not Enhance Postprandial Lipemia

K. Higashi1 , H. Shige1 , T. Ito1 , K. Nakajima1 , T. Ishikawa2 , H. Nakamura3 , F. Ohsuzu1
  • 1 First Department of Internal Medicine, National Defense Medical College
  • 2 SONY Wellness Center, SONY Cooperation
  • 3 Mitsukoshi Health and Welfare Foundation
Further Information

Publication History

Publication Date:
31 December 2001 (online)

Postprandial lipemia has been thought to be one of risk factors for coronary heart disease, and enhances in potential patients for atherosclerotic disease. Patients with impaired glucose tolerance (IGT) often show hypertriglyceride, which is caused by enhanced portprandial lipemia. Therefore, postprandial lipemia in patients with IGT and without hypertriglyceridemia has not been cleared. We have examined the levels of plasma triglyceride and chylomicron remnants after a high fat meal load (1 250 kcal, 40 % fat and 420 mg cholesterol) in 13 normotriglyceridemic subjects with IGT and 10 controls with normal glucose tolerance (NGT). Chylomicron remnants were evaluated as remnant-like particles (RLP) that were not bound to an immunoaffinity gel mixture containing apo A-I and apo B-100 monoclonal antibody. RLP cholesterol levels 4 hours after the fat load were significantly lower in IGT subjects than in NGT subjects. Increase of RLP cholesterol after the fat meal load only significantly correlated with increase of insulin during the first 30 min after a 75 g oral glucose tolerance test, but not fasting lipid, insulinogenic index and HOMA-R (homeostasis model) in all subjects. These results suggest that postprandial response does not enhance in IGT subjects, and may associate with early-phase insulin secretion and without insulin resistance in normotriglyceridemic men with IGT or NGT.

References:

  • 1 Simons L A, Dwyer T, Simons J, Bernstein L, Mock P, Poonia N S, et al. Chylomicrons and chylomicron remnants in coronary artery disease: a case-control study.  Atherosclerosis. 1987;  65 181-189
  • 2 Groot P H, van Stiphout W A, Krauss X H, Jansen H, van Tol A, van Ramshorst E, et al. Postprandial lipoprotein metabolism in normolipidemic men with and without coronary artery disease.  Arterioscler Thromb Vasc Biol. 1991;  11 653-662
  • 3 Karpe F, Bard J M, Steiner G, Carlson L A, Fruchart J C, Hamsten A. HDLs and alimentary lipemia. Studies in men with previous myocardial infarction at a young age.  Arterioscler Thromb. 1993;  13 11-22
  • 4 Patsch J R, Miesenböck G, Hopferwieser T, Muhlberger V, Knapp E, Dunn J K, et al. Relation of triglyceride metabolism and coronary artery disease. Studies in the postprandial state.  Arterioscler Thromb. 1992;  12 1336-1345
  • 5 Karpe F, Steiner G, Uffelman K, Olivecrona T, Hamsten A. Postprandial lipoproteins and progression of coronary atherosclerosis.  Atherosclerosis. 1994;  106 83-97
  • 6 Nakajima K, Saito T, Tamura A, Suzuki M, Nakano T, Adachi M, et al. Cholesterol in remnant-like lipoproteins in human serum using monoclonal anti apo B-100 and apo A-I immunoaffinity mixed gels.  Clin Chem Acta. 1993;  233 53-71
  • 7 Shige H, Ishikawa T, Ikewaki K, Nishiwaki M, Higashi K, Nakajima K, et al. Remnant-like very-low-density lipoproteins isolated from hypertriglyceridemic patients by immunoaffinity chromatography suppressed 3-hydroxy-3-methylglutaryl coenzyme A activity of cultured human skin fibroblasts.  Clin Chem Acta. 1997;  258 145-158
  • 8 Kugiyama K, Doi H, Takazoe K, Kawano H, et al. Remnant lipoprotein levels in fasting serum predict coronary events in patients with coronary artery disease.  Circulation. 1999;  99 2858-2860
  • 9 Tanaka A, Tomie N, Nakano T, Nakajima K, et al. Measurement of postprandial remnant-like particles (RLPs) following a fat-loading test.  Clin Chim Acta. 1998;  275 43-52
  • 10 Nakamura H, Ikewaki K, Nishiwaki M, Shige H. Postprandial hyperlipemia and coronary artery disease.  Ann New York Acad Sci. 1995;  748 441-446
  • 11 Devaraj S, Vega G, Lange R, Grundy S M, Jialal I. Remnant-like particle cholesterol levels in patients with dysbetalipoproteinemia or coronary artery disease.  Am J Med. 1998;  104 445-450
  • 12 Sakata K, Miho N, Shirotani M, Yoshida H, Takada Y, Takada A. Remnant-like particle cholesterol is a major risk factor for myocardial infarction in vasospastic angina with nearly normal coronary artery.  Atherosclerosis. 1998;  136 225-231
  • 13 McNamara J R, Shah P K, Nakajima K, Cuppeles L A, Wilson P W, Ordovas J M, et al. Remnant lipoprotein cholesterol and triglyceride referance ranges from the Framingham Heart Study.  Clin Chem. 1998;  44 1224-1232
  • 14 Higashi K, Ishikawa T, Shige H, Tomiyasu K, Yoshida H, Ito T, et al. Olive oil increases the magnitude of postprandial chylomicron remnants compared to milk fat and safflower oil.  J Am College Nutr. 1997;  16 429-434
  • 15 Kannel W B, McGee D L. Diabetes and glucose tolerance as risk factors for carciovascular disease: the Framingham Study.  Diabetes Care. 1979;  2 120-126
  • 16 Fuller J H, Shipley M J, Rose G, Jarrett R J, Keen H. Coronary-heart-disease risk and impaired glucose tolerance: the Whitehall study.  Lancet. 1980;  28 1373-1375
  • 17 Fuller J H, Shipley M J, Rose G, Jarrett R J, Keen H. Mortality from coronary heart disease and stroke in relation to degree of glycemia: Whitehall Study.  Br Med J. 1983;  287 867-870
  • 18 Butler W J, Ostrander L D, Carman W J, Lamphiear D E. Mortality from coronary heart disease in the Tecumseh Study: long-term effect of diabetes mellitus, glucose intolerance and other risk factors.  Am J Epidemiol. 1985;  121 541-547
  • 19 Curb J D, Rodriguez B L, Burchfiel C M, Abbott R D, Chiu D, Yano K. Sudden death, impaired glucose tolerance, and diabetes in Japanese American men.  Circulation. 1995;  91 2591-2595
  • 20 Taniguchi A, Nakai Y, Fukushima M, Imura H, Kawamura H, Nagata I, et al. Insulin sensitivity, insulin secretion, and glucose effectiveness in subjects with impaired glucose tolerance: A minimal model analysis.  Metabolism. 1994;  43 714-718
  • 21 Matsumoto K, Miyake S, Yano M, Ueki Y, Yamaguchi Y, Akazawa S, et al. Glucose tolerance, insulin secretion, and insulin sensitivity in nonobese and obese Japanese subjects.  Diabetes Care. 1997;  20 (10) 1562-1568
  • 22 Chen K W, Boyko F J, Bergstrom R W, Leonetti D L, Newell-Morris L, Wahl P W, et al. Earlier appearance of impaired insulin secretion than of visceral adiposity in the pathogenesis of NIDDM. 5-year follow up of initially non-diabetic Japanese American men.  Diabetes Care. 1995;  18 747-753
  • 23 Haffner S M, Miettinen H, Gaskill S P, Stern M P. Decreased insulin secretion and increased insulin resistance are independently related to the 7-year risk of NIDDM in Mexican-Americans.  Diabetes. 1995;  44 1386-1391
  • 24 Kosaka K, Kuzuya T, Yoshinaga H, Hagura R. A prospective study of health check examines for the development of non-insulin-dependent diabetes: Relationship of the incidence of diabetes with the initial insulinogenic index and degree of obesity.  Diabetic Med. 1996;  13 S120-S126
  • 25 Chen Y -DI, Swami S, Skowronski R, Coulston A, Reaven G M. Differences in postprandial lipemia between patients with normal glucose tolerance and noninsulin-dependent diabetes mellitus.  J Clin Endocrinol Metab. 1993;  76 172-177
  • 26 Lewis G F, O’Meara N M, Soltys P A, Blackman J D, Iverius P H, Druetzler A F, et al. Postprandial lipoprotein metabolism in normal and obese subjects: comparison after the vitamin A fat-loading test.  J Clin Endocrinol Metab. 1990;  71 1041-1050
  • 27 Jeppesen J, Hollenbeck C B, Zhou M Y, et al. Relation between insulin resistance, hyperinsulinemia, postheparin plasma lipoprotein lipase activity, and postprandial lipemia.  Arterioscler Thromb Vasc Biol. 1995;  15 320-324
  • 28 Hanefeld M, Temelkova-Kurktschiev T. The postprandial state and risk of atherosclerosis.  Diabetic Med. 1997;  14 S6-S11
  • 29 Diabetes Mellitus. Report of a WHO Study Group. Tech Rep ser 727 WHO Geneva; 1985
  • 30 Warnick G R, Benderson J, Albers J J. Dextran sulfate-Mg2+ precipitation procedure for quantitation of high-density-lipoprotein cholesterol.  Clin Chem. 1982;  28 1379-1388
  • 31 Kobayashi J, Hashimoto H, Fukamachi I, Tashiro J, Shirai K, Saito Y, et al. Lipoprotein lipase mass and activity in severe hypertriglyceridemia.  Clin Chim Acta. 1993;  216 113-123
  • 32 Kadish A H, Litle R L, Sternberg J C. A new and rapid method for determination of glucose by measurement of rate of oxygen consumption.  Clin Chem. 1968;  14 116-131
  • 33 Hales C N, Randle P J. Immunoassay of insulin with insulin antibody precipitate.  Biochem J. 1963;  88 137-146
  • 34 Matthews D R, Hosker J P, Rudenski A S, Naylor B A, Treacher D F, Turner R C. Homeostasis model assessment; insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man.  Diabetologia. 1985;  28 412-419
  • 35 Eliasson B, Mero N,Taskinen M R, Smith U. The insulin resistance syndrome and postprandial lipid intolerance in smokers.  Atherosclerosis. 1997;  129 79-88
  • 36 Karpe F, Hamsten A. Postprandial lipoprotein metabolism and atherosclerosis.  Curr Opin Lipid. 1995;  6 123-129
  • 37 Brown A J, Roberts D C. The effect of fasting triglyceride concentration and apolipoprotein E polymorphism on postprandial lipemia.  Arterioscler Thromb. 1991;  11 1737-1744
  • 38 Fielding B A, Callow J, Owen R M, Samra J S, Matthews D R, Frayn K N. Postprandial lipemia: the origin of an early peak studied by specific dietary fatty acid intake during sequential meals.  Am J Clin Nutr. 1996;  63 36-41
  • 39 Harano Y, Ohgaku S, Kosugi K, Yasuda H, Nakano T, Kobayashi M, et al. Clinical significance of altered insulin sensitivity in diabetes mellitus assessed by glucose, insulin, and somatostatin infusion.  J Clin Endocrinol Metab. 1981;  52 982-987
  • 40 Nikkila E A, Huttunen J K, Ehnholm C. Postheparin plasma lipoprotein lipase and hepatic lipase in diabetes mellitus. Relationship to plasma triglyceride metabolism.  Diabetes. 1997;  26 11-21
  • 41 Pfeifer M A, Brunzell J D, Best J D, Judzewitsch R G, Halter J B, Porte D Jr. The response of plasma triglyceride, cholesterol, and lipoprotein lipase to treatment in noninsulin-dependent diabetic subjects without familial hypertriglyceridemia.  Diabetes. 1983;  32 525-531
  • 42 Tobey T A, Greenfield M, Kraemer F, Reaven G M. Relationship between insulin resistance, insulin secretion, very low density lipoprotein kinetics and plasma triglyceride levels in normo-triglyceridemic man.  Metabolism. 1981;  30 165-171
  • 43 Jiao S, Matsuzawa Y, Matsubara K, Kihara S, Nakamura T, Tokunaga K, et al. Increased activity of intestinal acyl-CoA: cholesterol acyltransferase in rats with streptozocin-induced diabetes and restoration by insulin supplementation.  Diabetes. 1988;  37 342-346
  • 44 Yang L Y, Kuksis A, Steiner G. Comparison of the effect of hyperinsulinemia on acyl-CoA: cholesterol acyltransferase activity in the liver and intestine of the rat.  Atherosclerosis. 1994;  107 25-34

K. Higashi, M.D.

First Department of Internal Medicine
National Defense Medical College

3-2 Namiki, Tokorozawa
Saitama 359-0042
Japan


Phone: Phone:+ 81 (42) 996-5200

Email: E-mail:grd1205@gr.ndmc.ac.jp