Semin Liver Dis 2001; 21(1): 057-070
DOI: 10.1055/s-2001-12929
Copyright © 2001 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Mitochondria in Steatohepatitis

Dominique Pessayre, Alain Berson, Bernard Fromenty, Abdellah Mansouri
  • INSERM-U481 and Centre de Recherche de l'Association Claude Bernard sur les Hépatites Virales, Hôpital Beaujon, 92118 Clichy, France
Further Information

Publication History

Publication Date:
31 December 2001 (online)

ABSTRACT

For the first time in history, populations in affluent countries may concomitantly indulge in rich food and physical idleness. Various combinations of obesity, diabetes, and hypertriglyceridemia, with insulin resistance as the common feature, cause hepatic steatosis, which can trigger necroinflammation and fibrosis. Patients with ``primary'' steatohepatitis exhibit ultrastructural mitochondrial lesions, decreased activity of respiratory chain complexes, and have impaired ability to resynthesize ATP after a fructose challenge. Mitochondria play a major role in fat oxidation and energy production but also leak reactive oxygen species (ROS) and are the main cellular source of ROS. In patients with steatosis, mitochondrial ROS may oxidize hepatic fat deposits, as suggested in animal models. Lipid peroxidation products impair the flow of electrons along the respiratory chain, which may cause overreduction of respiratory chain components, further increasing mitochondrial ROS formation and lipid peroxidation. Another vicious circle could involve ROS-induced depletion of antioxidants, impairing ROS inactivation. Blood vitamin E is decreased in some obese children with steatohepatitis, and serum transaminases improve after vitamin E supplementation. Steatohepatitis is also caused by alcohol abuse, drugs, and other causes. In ``secondary'' steatohepatitis, mitochondrial ROS formation is further increased as the causative disease itself directly increases ROS or first impairs respiration, which secondarily increases mitochondrial ROS formation. This ``second hit'' could cause more lipid peroxidation, cytokine induction, Fas ligand induction, and fibrogenesis than in primary steatohepatitis.

REFERENCES

  • 1 Kopelman P G. Obesity as a medical problem.  Nature . 2000;  404 635-643
  • 2 Lavine J E. Relative antioxidant deficiency in obese children: a weighty contributor to morbidity?.  J Pediatr . 1999;  134 132-133
  • 3 Byron D, Minuk G Y. Profile of an urban hospital-based practice.  Hepatology . 1996;  24 813-815
  • 4 Pessayre D, Mansouri A, Fromenty B. Nonalcoholic steatohepatitis (NASH): potential causes and pathogenic mechanisms. In: Hepatology 2000 (Falk Symposium No 117) Dordrecht: Kluwer Academic Publishers; 2001: 57-76
  • 5 Knobler H, Schattner A, Zhornicki T. Fatty liver-an additional and treatable feature of the insulin resistance syndrome.  Q J Med . 1999;  92 73-79
  • 6 Banerji M A, Buckley M C, Chaiken R L. Liver fat, serum triglycerides and visceral adipose tissue in insulin-sensitive and insulin-resistant black men with NIDDM.  Int J Obes . 1995;  19 846-850
  • 7 Goto T, Onuma T, Takebe K. The influence of fatty liver on insulin clearance and insulin resistance in non- diabetic Japanese subjects.  Int J Obes . 1995;  19 841-845
  • 8 Tankurt E, Biberoglu S, Ellidokuz E. Hyperinsulinemia and insulin resistance in non-alcoholic steatohepatitis.  J Hepatol . 1999;  31 963-968
  • 9 Marchesini G, Brizi M, Morselli-Labate A M. Association of nonalcoholic fatty liver disease with insulin resistance.  Am J Med . 1999;  107 450-455
  • 10 Herion D W, Arioglu E, Doo E. Severe insulin resistance syndromes and NASH.  Hepatology . 1999;  30 589A
  • 11 Zelman S. The liver in obesity.  Arch Intern Med . 1958;  90 141-156
  • 12 Falchuk K R, Fiske S C, Haggitt R C. Pericentral hepatic fibrosis and intracellular hyalin in diabetes mellitus.  Gastroenterology . 1980;  78 535-541
  • 13 Lee R G. Nonalcoholic steatohepatitis: a study of 49 patients.  Hum Pathol . 1989;  20 594-598
  • 14 Ludwig J, McGill D B, Lindor K D. Nonalcoholic steatohepatitis.  J Gastroenterol Hepatol . 1997;  12 398-403
  • 15 James O, Day C. Non-alcoholic steatohepatitis: another disease of affluence.  Lancet . 1999;  35 1634-1636
  • 16 Diehl A M. Nonalcoholic steatohepatitis.  Semin Liver Dis . 1999;  19 221-229
  • 17 Fromenty B, Pessayre D. Inhibition of mitochondrial beta-oxidation as a mechanism of hepatotoxicity.  Pharmacol Ther . 1995;  67 101-154
  • 18 Pessayre D. Liver failure and mitochondrial disease. In: Balisteri WF, Lindasy K, Zucker S, course directors. Hepatology into the Next Millennium. Lessons from the Past-Issues for the Future. AASLD Postgraduate Course; 1999; 147-157
  • 19 Pessayre D, Fromenty B, Mansouri A. Drug-induced steatosis and steatohepatitis. In: Lemasters JJ, Niemenen AL (eds). Mitochondria in Pathogenesis. New York: Plenum. In press
  • 20 Green D R, Reed J C. Mitochondria and apoptosis. Science 1998 281: 1309-1312
  • 21 Wallace D C. Mitochondrial disease in man and mouse.  Science . 1999;  283 1482-1488
  • 22 Saraste M. Oxidative phosphorylation at the fin de siècle.  Science . 1999;  283 1488-1493
  • 23 McGarry J D, Foster D W. Regulation of hepatic fatty acid oxidation and ketone body production.  Annu Rev Biochem . 1980;  49 395-420
  • 24 Shigenaga M K, Hagen T M, Ames B N. Oxidative damage and mitochondrial decay in aging.  Proc Natl Acad Sci U S A . 1994;  91 10771-10778
  • 25 LeDoux S P, Driggers W J, Hollensworth B S. Repair of alkylation and oxidative damage in mitochondrial DNA.  Mutat Res . 1999;  434 149-159
  • 26 Kuchino Y, Mori F, Kasai H. Misreading of DNA templates containing 8-hydroxydeoxyguanosine at the modified base and adjacent residues.  Nature . 1987;  327 77-79
  • 27 Pinz K G, Shibutani S, Bogenhagen D F. Action of mitochondrial DNA polymerase γ at sites of base loss or oxidative damage.  J Biol Chem . 1995;  270 9202-9206
  • 28 Berneburg M, Grether-Beck S, Kürten V. Singlet oxygen mediates the UVA-induced generation of the photoaging-associated mitochondrial common deletion.  J Biol Chem . 1999;  274 15345-15349
  • 29 Yen T C, Chen Y S, King K L. Liver mitochondrial respiratory functions decline with age.  Biochem Biophys Res Commun . 1989;  3 994-1003
  • 30 Findor J, Perez V, Bruch Igurtua E. Structure and ultrastructure of the liver in aged persons.  Acta Hepatogastroenterol . 1973;  20 200-204
  • 31 Cortopassi G A, Shibata D, Soong N W. A pattern of accumulation of a somatic deletion of mitochondrial DNA in aging human tissues.  Proc Natl Acad Sci U S A . 1992;  89 7370-7374
  • 32 Michikawa Y, Mazzucchelli F, Bresolin N. Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication.  Science . 1999;  286 774-779
  • 33 Ku H H, Brunk U T, Sohal R S. Relationship between mitochondrial superoxide and hydrogen peroxide production and longevity of mammalian species.  Free Radic Biol Med . 1993;  15 621-627
  • 34 Barja G, Herrero A. Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals.  FASEB J . 2000;  14 312-318
  • 35 Sohal R S, Weindruch R. Oxidative stress, caloric restriction, and aging.  Science . 1996;  273 59-63
  • 36 Orr W C, Sohal R S. Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster Science .  1994;  263 1128-1130
  • 37 Sohal B S, Agarwal A, Agarwal S. Simultaneous overexpression of copper and zinc-containing superoxide dismutase and catalase retards age-related oxidative damage and increases metabolic potential in Drosophila melanogaster J Biol Chem .  1995;  270 15671-15674
  • 38 Esposito L A, Melov S, Panov A. Mitochondrial disease in mouse results in increased oxidative stress.  Proc Natl Acad Sci U S A . 1999;  96 4820-4825
  • 39 Murdoch D G, Boone B E, Esposito L A. Up-regulation of nuclear and mitochondrial genes in the skeletal muscle of mice lacking the heart/muscle isoform of the adenine nucleotide translocator.  J Biol Chem . 1999;  274 14429-14433
  • 40 Haukonen J, Juselius J K, Tiranti V. Role of adenine nucleotide translocator 1 in mtDNA maintenance.  Science . 2000;  289 782-785
  • 41 Morris A AM, Taanman J W, Blake J. Liver failure associated with mitochondrial DNA depletion.  J Hepatol . 1998;  28 556-563
  • 42 Bioulac-Sage P, Parrot-Roulaud F, Mazat J P. Fatal neonatal liver failure and mitochondrial cytopathy (oxidative phosphorylation deficiency): a light and electron microscopic study of the liver.  Hepatology . 1993;  18 839-846
  • 43 Wiesner R J. Adaptations of mitochondrial gene expression to changing cellular energy demands.  News Physiol Sci . 1997;  12 178-183
  • 44 Kroemer G, Reed J C. Mitochondrial control of cell death.  Nat Med . 2000;  6 513-519
  • 45 Pessayre D, Feldmann G, Haouzi D. Hepatocyte apoptosis triggered by natural substances (cytokines, other endogenous substances and foreign toxins). In: Cameron RG, Feuer G (eds). Apoptosis and Its Modulation by Drugs. Heidelberg: Springer Verlag, Handb Exp Pharmacol 2000 142: 59-108
  • 46 Pessayre D, Haouzi D, Fau D. Withdrawal of life support, altruistic suicide, fratricidal killing and euthanasia by lymphocytes: different forms of drug-induced hepatic apoptosis.  J Hepatol . 1999;  31 760-770
  • 47 Leist M, Single B, Castoldi A F. Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis.  J Exp Med . 1997;  185 1481-1486
  • 48 Feldmann G, Haouzi D, Moreau A. Opening of the mitochondrial permeability transition pore causes matrix expansion and outer membrane rupture in Fas-mediated hepatic apoptosis in mice.  Hepatology . 2000;  31 674-683
  • 49 Haouzi D, Lekehal M, Moreau A. Cytochrome P450-generated reactive metabolites cause mitochondrial permeability transition, caspase activation and apoptosis in rat hepatocytes.  Hepatology . 2000;  32 303-311
  • 50 Naumann M, Scheidereit C. Activation of NF-κB in vivo is regulated by multiple phosphorylations.  EMBO J . 1994;  13 4597-4607
  • 51 Dumont A, Hehner S P, Hofmann T G. Hydrogen peroxide-induced apoptosis is CD95-independent, requires the release of mitochondria-derived oxygen species and the activation of NF-κB.  Oncogene . 1998;  18 747-757
  • 52 Ye J, Wang S, Leonard S S. Role of reactive oxygen species and p53 in chromium(VI)-induced apoptosis.  J Biol Chem . 1999;  274 34974-34980
  • 53 Miyashita T, Reed J C. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene.  Cell . 1995;  80 293-299
  • 54 Gavrilova O, Marcus-Samuels B, Graham D. Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice.  J Clin Invest . 2000;  105 271-278
  • 55 Fong D G, Nehra V, Lindor K D. Metabolic and nutritional considerations in nonalcoholic fatty liver.  Hepatology . 2000;  32 3-10
  • 56 Gorden E S. Non-esterified fatty acids in blood of obese and lean subjects.  Am J Clin Nutr . 1960;  8 740-747
  • 57 Bjorntorp P, Bergman H, Varnauskas E. Plasma free fatty acid turnover in obesity.  Acta Med Scand . 1969;  185 351-356
  • 58 Simoneau J A, Veerkamp J H, Turcotte L P. Markers of capacity to utilize fatty acids in human skeletal muscle: relation to insulin resistance and obesity and effects of weight loss.  FASEB J . 1999;  13 2051-2060
  • 59 Shulman G I. Cellular mechanisms of insulin resistance.  J Clin Invest . 2000;  106 171-176
  • 60 Brunt E M, Janney C G, Di Bisceglie M A. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions.  Am J Gastroenterol . 1999;  94 2467-2474
  • 61 Ratziu V, Giral P, Charlotte F. Liver fibrosis in overweight patients.  Gastroenterology . 2000;  118 1117-1123
  • 62 Teli M R, James O FW, Burt A D. The natural history of non-alcoholic fatty liver: a follow up study.  Hepatology . 1995;  22 1714-1719
  • 63 Lettéron P, Fromenty B, Terris B. Acute and chronic steatosis lead to in vivo lipid peroxidation in mice.  J Hepatol . 1996;  24 200-208
  • 64 Leclercq I A, Farrell G C, Field J. CYP2E1 and CYP4A as microsomal catalysts of lipid peroxides in murine non-alcoholic steatohepatitis.  J Clin Invest . 2000;  105 1067-1075
  • 65 Hruszkewycz A M. Evidence for mitochondrial DNA damage by lipid peroxidation.  Biochem Biophys Res Commun . 1988;  153 191-197
  • 66 Chen J, Schenker S, Frosto T A. Inhibition of cytochrome c oxidase activity by 4-hydroxynonenal (HNE). Role of HNE adduct formation with the enzyme catalytic site.  Biochim Biophys Acta . 1998;  1380 336-344
  • 67 Kern P A, Saghizadeh M, Ong J M. The expression of tumor necrosis factor in human adipose tissue. Regulation by obesity, weight loss, and relationship to lipoprotein lipase.  J Clin Invest . 1995;  95 2111-2119
  • 68 Lancaster J R, Laster S M, Gooding L R. Inhibition of target cell mitochondrial electron transfer by tumor necrosis factor.  FEBS Lett . 1989;  248 169-174
  • 69 Caldwell S H, Swerdlow R H, Khan E M. Mitochondrial abnormalities in non-alcoholic steatohepatitis.  J Hepatol . 1999;  31 430-434
  • 70 Perez-Carrera M, Del Hoyo P, Martin M. Activity of the mitochondrial respiratory chain enzymes is decreased in the liver of patients with nonalcoholic steatohepatitis.  Hepatology . 1999;  30 379A
  • 71 Cortez-Pinto, Chatham J, Chacko V P. Alterations in liver ATP homeostasis in human nonalcoholic steatohepatitis. A pilot study.  JAMA . 1999;  282 1659-1664
  • 72 Hensley K, Kotake Y, Sang H. Dietary choline restriction causes complex I dysfunction and increased H2O2 generation in liver mitochondria.  Carcinogenesis . 2000;  21 983-989
  • 73 Cortez-Pinto H, Lin H Z, Yang S Q. Lipids up- regulate uncoupling protein 2 expression in rat hepatocytes.  Gastroenterology . 1999;  116 1184-1193
  • 74 Yang S Q, Zhu H, Li Y. Mitochondrial adaptations to obesity-related oxidant stress.  Arch Biochem Biophys . 2000;  378 259-268
  • 75 Capel I D, Dorrell H M. Abnormal antioxidant defence in some tissues of congenitally obese mice.  Biochem J . 1984;  219 41-49
  • 76 Watson A M, Poloyac S M, Howard G. Effect of leptin on cytochrome P-450, conjugation, and antioxidant enzymes in the ob/ob mouse.  Drug Metab Dispos . 1999;  27 695-700
  • 77 Sastre J, Pallardo F V, Llopis J. Glutathione depletion by hyperphagia-induced obesity.  Life Sci . 1989;  45 183-187
  • 78 Strauss R S. Comparison of serum concentrations of α-tocopherol and β-carotene in a cross-sectional sample of obese and nonobese children (NHANES III).  J Pediatr . 1999;  134 160-165
  • 79 Lavine J E. Vitamin E treatment of nonalcoholic steatohepatitis in children: a pilot study.  J Pediatr . 2000;  136 734-738
  • 80 Weltman M D, Farrell G C, Hall P. Hepatic cytochrome P450 2E1 is increased in patients with nonalcoholic steatohepatitis.  Hepatology . 1998;  27 128-133
  • 81 Lucas D, Farez C, Bardou L G. Cytochrome P450 2E1 activity in diabetic and obese patients as assessed by chlorzoxazone hydroxylation.  Fundam Clin Pharmacol . 1998;  12 553-558
  • 82 Kotliar M, Carson S W. Effects of obesity on the cytochrome P450 enzyme system.  Int J Clin Pharmacol Ther . 1999;  37 9-18
  • 83 McCarver D G, Byun R, Hines R N. A genetic polymorphism in regulatory sequences of human CYP2E1: association with increased chlorzoxazone hydroxylation in the presence of obesity and ethanol intake.  Toxicol Appl Pharmacol . 1998;  152 276-281
  • 84 Bacon B R, Farahvash M J, Janney C G. Nonalcoholic steatohepatitis: an expanded clinical entity.  Gastroenterology . 1994;  107 1103-1109
  • 85 Tuomainen T P, Nyyssönen K, Salonen R. Body iron stores are associated with serum insulin and blood glucose concentrations. Population study in 1,013 Finnish men.  Diabetes Care . 1997;  20 426-428
  • 86 Fernandez-Real J M, Ricart-Engle W, Arroyo E. Serum ferritin as a component of the insulin resistance syndrome.  Diabetes Care . 1998;  21 62-68
  • 87 George D K, Goldwurm S, Macdonald G A. Increased hepatic iron concentration in nonalcoholic steatohepatitis is associated with increased fibrosis.  Gastroenterology . 1998;  114 311-318
  • 88 Mendler M H, Turlin B, Moirand R. Insulin resistance-associated hepatic iron overload.  Gastroenterology . 1999;  117 1155-1163
  • 89 Bonkovsky H L, Jawaid Q, Tortorelli K. Non-alcoholic steatohepatitis and iron: increased prevalence of mutations of the HFE gene in non-alcoholic steatohepatitis.  J Hepatol . 1999;  31 421-429
  • 90 Lettéron P, Duchatelle V, Berson A. Increased ethane exhalation, an in vivo index of lipid peroxidation, in alcohol abusers.  Gut . 1993;  34 409-414
  • 91 Mansouri A, Gaou I, De Kerguenec C. An alcoholic binge causes massive degradation of hepatic mitochondrial DNA in mice.  Gastroenterology . 1999;  117 181-190
  • 92 Fromenty B, Grimbert S, Mansouri A. Hepatic mitochondrial DNA deletion in alcoholics: association with microvesicular steatosis.  Gastroenterology . 1995;  108 193-200
  • 93 Mansouri A, Fromenty B, Berson A. Multiple hepatic mitochondrial DNA deletions suggest premature oxidative aging in alcoholic patients.  J Hepatol . 1997;  27 96-102
  • 94 Hillan K J, Logan M C, Ferrier R K. Hepatocyte proliferation and serum hepatocyte growth factor levels in patients with alcoholic hepatitis.  J Hepatol . 1996;  24 385-390
  • 95 Ballardini G, Groff P, Zoli M. Increased risk of hepatocellular carcinoma development in patients with cirrhosis and with high hepatocellular proliferation.  J Hepatol . 1994;  20 218-222
  • 96 Tsuchishina M, Tsustumi M, Shiroeda H. Study of mitochondrial DNA deletion in alcoholics.  Alcohol Clin Exp Res . 2000;  24 12S-15S
  • 97 Cahill A, Wang X, Hoek J B. Increased oxidative damage to mitochondrial DNA following chronic ethanol consumption.  Biochem Biophys Res Commun . 1997;  235 286-290
  • 98 Wieland P, Lauterburg B H. Oxidation of mitochondrial proteins and DNA following administration of ethanol.  Biochem Biophys Res Commun . 1995;  213 815-819
  • 99 Nordmann R, Ribière C, Rouach H. Implication of free radical mechanisms in ethanol-induced cellular injury.  Free Radic Biol Med . 1992;  12 219-240
  • 100 Arai M, Leo M A, Nakano M. Biochemical and morphological alterations of baboon hepatic mitochondria after chronic ethanol consumption.  Hepatology . 1984;  4 165-174
  • 101 Coleman W B, Cunningham C C. Effects of chronic ethanol consumption on the synthesis of polypeptides encoded by the hepatic mitochondrial genome.  Biochim Biophys Acta . 1990;  1019 142-150
  • 102 Thayer W S, Rubin E. Molecular alterations in the respiratory chain of rat liver after chronic ethanol consumption.  J Biol Chem . 1981;  256 6090-6097
  • 103 Kukielka E, Dicker E, Cederbaum A I. Increased production of reactive oxygen species by rat liver mitochondria after chronic ethanol treatment.  Arch Biochem Biophys . 1994;  309 377-386
  • 104 Mansouri A, Gaou I, Fromenty B. Premature oxidative aging of hepatic mitochondrial DNA in Wilson's disease.  Gastroenterology . 1997;  113 599-605
  • 105 Gu M, Cooper J M, Butler P. Oxidative phosphorylation defects in liver of patients with Wilson's disease.  Lancet . 2000;  356 469-474
  • 106 Fromenty B, Fisch C, Berson A. Dual effect of amiodarone on mitochondrial respiration. Initial protonophoric uncoupling effect followed by inhibition of the respiratory chain at the levels of complex I and complex II.  J Pharmacol Exp Ther . 1990;  255 1377-1384
  • 107 Fromenty B, Fisch C, Labbe G. Amiodarone inhibits the mitochondrial β-oxidation of fatty acids and produces microvesicular steatosis of the liver in mice.  J Pharmacol Exp Ther . 1990;  255 1371-1376
  • 108 Fromenty B, Lettéron P, Fisch C. Evaluation of human blood lymphocytes as a model to study the effects of drugs on human mitochondria. Effects of low concentrations of amiodarone on fatty acid oxidation, ATP levels and cell survival.  Biochem Pharmaco . 1993;  46 421-432
  • 109 Deschamps D, De Beco V, Fisch C. Inhibition by perhexiline of oxidative phosphorylation and the β-oxidation of fatty acids: possible role in pseudoalcoholic liver lesions.  Hepatology . 1994;  19 948-961
  • 110 Berson A, De Beco V, Lettéron P. Steatohepatitis-inducing drugs cause mitochondrial dysfunction and lipid peroxidation in rat hepatocytes.  Gastroenterology . 1998;  114 764-774
  • 111 Esterbauer H, Schaur R J, Zollner H. Chemistry and biochemistry of 4hydroxynonenal, malondialdehyde and related aldehydes.  Free Radic Biol Med . 1991;  11 81-128
  • 112 Zatloukal K, Böck G, Rainer I. High molecular weight components are main constituents of Mallory bodies isolated with a fluorescence activated cell sorter.  Lab Invest . 1991;  64 200-206
  • 113 Zhang-Gouillon Z Q, Yuan Q X, Hu B. Mallory body formation by ethanol feeding in drug-primed mice.  Hepatology . 1998;  27 116-122
  • 114 Kamimura S, Gaal K, Britton R S. Increased 4-hydroxynonenal levels in experimental alcoholic liver disease: association of lipid peroxidation with liver fibrogenesis.  Hepatology . 1992;  16 448-453
  • 115 Bedossa P, Houglum K, Trautwein C. Stimulation of collagen α-1 (I) gene expression is associated with lipid peroxidation in hepatocellular injury: a link to tissue fibrosis?.  Hepatology . 1994;  19 1262-1271
  • 116 Curzio M, Esterbauer H, Dianzani M U. Chemotactic activity of hydroxyalkenals on rats neutrophils.  Int J Tissue React . 1985;  7 137-142
  • 117 Leonarduzzi G, Scavazza A, Biasi F. The lipid peroxidation end product 4-hydroxy-2,3-nonenal up-regulates transforming growth factor β1 expression in the macrophage lineage: a link between oxidative injury and fibrosclerosis.  FASEB J . 1997;  11 851-857
  • 118 Albrecht H, Schook L B, Jongeneel C V. Nuclear migration of NF-κB correlates with TNF-α mRNA accumulation.  J Inflamm . 1995;  45 64-71
  • 119 Gressner A M, Wulbrand U. Variation in immunocytochemical expression of transforming growth factor (TGF)-beta in hepatocytes in culture and liver slices.  Cell Tissue Res . 1997;  287 143-152
  • 120 Dong W, Simeonova P P, Gallucci R. Cytokine expression in hepatocytes: role of oxidative stress.  J Interferon Cytokine Res . 1998;  18 629-638
  • 121 Fang C, Lindros K O, Badger T M. Zonated expression of cytokines in rat liver: effects of chronic ethanol and the cytochrome P450 2E1 inhibitor, chlormethiazole.  Hepatology . 1998;  27 1304-1310
  • 122 Neuman M G, Shear N H, Bellentani S. Role of cytokines in ethanol-induced cytotoxicity in vitro in HepG2 cells.  Gastroenterology . 1998;  115 157-166
  • 123 Higuchi M, Aggarwal B B, Yeh E TH. Activation of CPP32-like protease in tumor necrosis factor-induced apoptosis is dependent on mitochondrial function.  J Clin Invest . 1997;  99 1751-1758
  • 124 Inayat-Hussain S H, Couet C, Cohen G M. Processing/activation of CPP32-like proteases is involved in transforming growth factor β1-induced apoptosis in rat hepatocytes.  Hepatology . 1997;  25 1516-1526
  • 125 Ritter S J, Davies P JA. Identification of a transforming growth factor-β1/bone morphogenic protein 4 (TGF-β1/BMP4) response element within tissue transglutaminase gene promoter.  J Biol Chem . 1998;  273 12798-12806
  • 126 Trejo-Skalli A V, Velasco P T, Murthy S NP. Association of a transglutaminase-related antigen with intermediate filaments.  Proc Natl Acad Sci U S A . 1995;  92 8940-8944
  • 127 Casini A, Pinzani M, Milani S. Regulation of extracellular matrix synthesis by transforming growth factor-β1 in human fat storing cells.  Gastroenterology . 1993;  105 245-253
  • 128 Yoshimura T, Matsushima K, Tanaka S. Purification of a human monocyte-derived neutrophil chemotactic factor that has peptide sequence similarity to other host defense cytokines.  Proc Natl Acad Sci U S A . 1987;  84 9233-9237
  • 129 Adachi Y, Bradford B U, Gao W. Inactivation of Kupffer cells prevents early alcohol-induced liver injury.  Hepatology . 1994;  20 453-460
  • 130 Iimuro Y, Gallucci R M, Luster M I. Antibodies to tumor necrosis factor-α attenuate hepatic necrosis and inflammation due to chronic exposure to ethanol in rats.  Hepatology . 1997;  26 1530-1537
  • 131 Yin M, Wheeler M D, Kono H. Essential role of tumor necrosis factor α in alcohol-induced liver injury in mice.  Gastroenterology . 1999;  117 942-952
  • 132 Grove J, Daly A K, Bassendine M F. Association of a tumor necrosis factor promoter polymorphism with susceptibility to alcoholic steatohepatitis.  Hepatology . 1997;  26 143-146
  • 133 Takahachi T, Tanaka M, Inazawa J. Human Fas ligand: gene structure, chromosomal location and species specificity.  Int Immunol . 1994;  6 1567-1574
  • 134 Hug H, Strand S, Grambihler A. Reactive oxygen intermediates are involved in the induction of CD95 ligand mRNA expression by cytostatic drugs in hepatoma cells.  J Biol Chem . 1997;  272 28191-28193
  • 135 Galle P R, Hofmann W J, Walczak H. Involvement of the CD95 (APO-1/Fas) receptor and ligand in liver damage.  J Exp Med . 1995;  182 1223-1230
  • 136 Strand S, Hofmann W J, Grambihler A. Hepatic failure and liver cell damage in acute Wilson's disease involve CD95 (APO-1/Fas) mediated apoptosis.  Nat Med . 1998;  4 588-593
  • 137 Chavin K D, Yang S Q, Lin H Z. Obesity induces expression of uncoupling protein-2 in hepatocytes and promotes liver ATP depletion.  J Biol Chem . 1999;  274 5692-5700
  • 138 Fleury C, Nererova M, Collins S. Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia.  Nat Genet . 1997;  15 269-272
  • 139 Jaburek M, Varecha M, Gimeno R E. Transport function and regulation of mitochondrial uncoupling proteins 2 and 3.  J Biol Chem . 1999;  274 26003-26007
  • 140 Wieckowski M R, Wojtczak L. Involvement of the dicarboxylate carrier in the protonophoric action of long-chain fatty acids in mitochondria.  Biochem Biophys Res Commun . 1997;  232 414-417
  • 141 Barsch G S, Farooqi S, O'Rahilly S. Genetics of body weight regulation.  Nature . 2000;  404 644-651
  • 142 Shepherd P R, Khan B B. Glucose transporters and insulin action. Implications for insulin resistance and diabetes mellitus.  N Engl J Med . 1999;  341 248-257
  • 143 Grove J, Daly A K, Bassendine M F. Interleukin 10 promoter region polymorphisms and susceptibility to advanced alcoholic liver disease.  Gut . 2000;  6 540-545
  • 144 Ludwig J, McGill D B, Lindor K D. Nonalcoholic steatohepatitis.  J Gastroenterol Hepatol . 1997;  12 398-403
  • 145 Andersen T, Gluud C, Franzmann M B. Hepatic effects of dietary weight loss in morbidly obese subjects.  J Hepatol . 1991;  12 224-229
  • 146 Hocking M P, Davis G L, Franzini D A. Long-term consequences after jejunoileal bypass for morbid obesity.  Dig Dis Sci . 1998;  43 2493-2499
  • 147 Luyckx F H, Desaive C, Thiry A. Liver abnormalities in severely obese subjects: effect of drastic weight loss after gastroplasty.  Int J Obes . 1998;  22 222-226
  • 148 Pessayre D, Dolder A, Artigou J Y. Effect of fasting on metabolite-mediated hepatotoxicity in the rat.  Gastroenterology . 1979;  77 264-271
  • 149 Colell A, Garcia-Ruiz C, Miranda M. Selective glutathione depletion of mitochondria by ethanol sensitizes hepatocytes to tumor necrosis factor.  Gastroenterology . 1998;  115 1541-1551
  • 150 Ueno T, Sugawara H, Sujaku K. Therapeutic effects of restricted diet and exercise in obese patients with fatty liver.  J Hepatol . 1997;  27 103-107
  • 151 Knobler H, Schattner A, Zhornicki T. Fatty liver-an additional and treatable feature of the insulin resistance syndrome.  Q J Med . 1999;  92 73-79
  • 152 Bray G A, Tartaglia L A. Medicinal strategies in the treatment of obesity.  Nature . 2000;  404 672-677
  • 153 Lin H Z, Yang S Q, Chuckaree C. Metformin reverses fatty liver disease in obese, leptin-deficient mice.  Nat Med . 2000;  6 998-1003