Semin Respir Crit Care Med 2001; 22(3): 269-280
DOI: 10.1055/s-2001-15784
Copyright © 2001 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Ventilator-Induced Lung Injury and Recommendations for Mechanical Ventilation of Patients with ARDS

Warren L. Lee1 , Arthur S. Slutsky1 2
  • 1Division of Respirology, Department of Medicine and the Interdepartmental Critical Care Medicine Division, University of Toronto
  • 2St. Michael's Hospital, Toronto, Ontario, Canada
Further Information

Publication History

Publication Date:
31 December 2001 (online)

ABSTRACT

Mechanical ventilation is life sustaining and is the standard therapy for acute respiratory failure. The 16th century anatomist Vesalius is often credited for the earliest account of positive-pressure ventilation. In his work De humani corporis fabrica (On the Fabric of the Human Body), he described how an animal could be resuscitated by blowing into a reed inserted into a hole in its trachea.[1] Although positive pressure ventilation using bellows was first used for drowning victims in the 1700s, there were soon concerns that such therapy could in fact be harmful to the lungs.[2] In 1827, Leroy d'Etoille condemned bellows ventilation after discovering that it could lead to emphysema and tension pneumothoraces. Subsequently, positive pressure ventilation would be virtually abandoned for over 100 years.[2]

Despite this early concern about the potential for harm from mechanical ventilation, it is only in the last one to two decades that research into so-called ventilator-induced lung injury (VILI) has blossomed. Indeed, although initial studies have focused on which ventilatory parameters are associated with the most (or least) harm, there has been an explosion of research in the last 5 years attempting to delineate the basic cellular mechanisms by which mechanical ventilation injures the lung. Recently, there has been exciting evidence to suggest that lung injury induced by mechanical ventilation may have important systemic consequences, including multi-organ dysfunction.[3] Lastly and most importantly, there is accumulating data from clinical trials in humans that ventilatory strategies designed to avoid VILI can in fact save lives.

REFERENCES

  • 1 Vesalius A. De humani corporis fabrica, Lib VII, Cap.  <~>XIX De vivorum sectione nonnulla. Basle: Operinus 1543: 658
  • 2 Mörch E T. History of mechanical ventilation. In: Kirby RR, Banner MJ, Downs JB, eds. Clinical Applications of Ventilatory Support Edinburg, U.K.: Churchill Livingstone 1990: 1-61
  • 3 Ranieri V M, Suter P M, Slutsky A S. Mechanical ventilation as a mediator of multisystem organ failure in acute respiratory distress syndrome (letter).  JAMA . 2000;  284 43-44
  • 4 Dreyfuss D, Saumon G. Ventilator-induced lung injury: lessons from experimental studies.  Am J Respir Crit Care Med . 1998;  157 294-323
  • 5 Dreyfuss D, Soler P, Basset G, Saumon G. High inflation pressure pulmonary edema: respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure.  Am Rev Respir Dis . 1988;  137 1159-1164
  • 6 Hernandez L, Peevy K J, Moise A A, Parker J C. Chest wall restriction limits high airway pressure-induced lung injury in young rabbits.  J Appl Physiol . 1989;  66 2364-2368
  • 7 Carlton D P, Cummings J J, Scheerer R G, Poulain F R, Bland R D. Lung overexpansion increases pulmonary microvascular protein permeability in young lambs.  J Appl Physiol . 1990;  69 577-583
  • 8 Colmenero-Ruiz M, Fernández-Mondéjar E, Fernández-Sacristán M A, Rivera-Fernández R, Vazquez-Mata G. PEEP and low tidal volume ventilation reduce lung water in porcine pulmonary edema.  Am J Respir Crit Care Med . 1997;  155 964-970
  • 9 Demling R H, Staub N C, Edmunds Jr H L. Effect of end-expiratory airway pressure on accumulation of extravascular lung water.  J Appl Physiol . 1975;  38 907-912
  • 10 Dreyfuss D, Saumon G. Role of tidal volume, FRC, and end-inspiratory volume in the development of pulmonary edema following mechanical ventilation.  Am Rev Respir Dis . 1993;  148 1194-1203
  • 11 Bshouty Z, Ali J, Younes M. Effect of tidal volume and PEEP on rate of edema formation in in situ perfused canine lobes.  J Appl Physiol . 1988;  64 1900-1907
  • 12 Slutsky A S. Lung injury caused by mechanical ventilation.  Chest . 1999 (suppl 1);  116 (9S-15S)
  • 13 Mead J, Takishima T, Leith D. Stress distribution in lungs: a model of pulmonary elasticity.  J Appl Physiol . 1970;  28 596-608
  • 14 Roupie E, Dambrosio M, Servillo G. Titration of tidal volume and induced hypercapnia in acute respiratory distress syndrome.  Am J Respir Crit Care Med . 1995;  152 121-128
  • 15 Amato M BP, Barbas C SV, Medeiros D M. Beneficial effects of the ``open lung approach'' with low distending pressures in acute respiratory distress syndrome: a prospective randomised study on mechanical ventilation.  Am J Respir Crit Care Med . 1995;  152 1835-1846
  • 16 Muscedere J G, Mullen J BM, Gan K, Slutsky A S. Tidal ventilation at low airway pressures can augment lung injury.  Am J Respir Crit Care Med . 1994;  149 1327-1334
  • 17 Sandhar B L, Niblett D J, Argiras E P, Dunnill M S, Sykes M K. Effects of positive end-expiratory pressure on hyaline membrane formation in rabbit model of the neonatal respiratory distress syndrome.  Intensive Care Med . 1988;  14 538-546
  • 18 Taskar V, John J, Evander E, Robertson B, Jonson B. Surfactant dysfunction makes lungs vulnerable to repetitive collapse and reexpansion.  Am J Respir Crit Care Med . 1997;  155 313-320
  • 19 Pelosi P, Gattinoni L. Respiratory mechanics in ARDS: a siren for physicians?.  Intensive Care Med . 2000;  26 653-656
  • 20 Jonson B, Richard J-C, Straus C, Mancebo J, Lemaire F, Brochard L. Pressure-volume curves and compliance in acute lung injury: evidence of recruitment above the lower inflection point.  Am J Respir Crit Care Med . 1999;  159 1172-1178
  • 21 Rimensberger P C, Cox P N, Frndova H, Bryan A C. The open lung during small tidal volume ventilation: concepts of recruitment and ``optimal'' positive end-expiratory pressure.  Crit Care Med . 1999;  27 1946-1952
  • 22 Krishnan J A, Brower R G. High-frequency ventilation for acute lung injury and ARDS.  Chest . 2000;  118 795-807
  • 23 McCulloch P R, Forkert P G, Froese A B. Lung volume maintenance prevents lung injury during high frequency oscillation in surfactant deficient rabbits.  Am Rev Respir Dis . 1988;  137 1185-1192
  • 24 Bond D M, Froese A B. Volume recruitment maneuvers are less deleterious than persistent low lung volumes in the atelectasis-prone rabbit lung during high-freqency oscillation.  Crit Care Med . 1993;  21 402-412
  • 25 Hotchkiss Jr R J, Blanch L, Murias G, Adams A B, Olson D A, Wangensteen O D, Leo P H, Marini J J. Effects of decreased respiratory frequency on ventilator-induced lung injury.  Am J Respir Crit Care Med . 2000;  161 463-468
  • 26 Luce J M. The cardiovascular effects of mechanical ventilation and positive end-expiratory pressure.  JAMA . 1984;  10 807-811
  • 27 Broccard A F, Hotchkiss J R, Suzuki S, Olson D, Marini J J. Effects of mean airway pressure and tidal excursion on lung injury induced by mechanical ventilation in an isolated perfused rabbit lung model.  Crit Care Med . 1999;  27 1533-1541
  • 28 Dreyfuss D, Soler P, Saumon G. Mechanical ventilation-induced pulmonary edema: interaction with previous lung alterations.  Am J Respir Crit Care Med . 1995;  151 1568-1575
  • 29 Gattinoni L, D'Andrea L, Pelosi P, Vitale G, Pesenti A, Fumagalli R. Regional effects and mechanism of positive end-expiratory pressure in early adult respiratory distress syndrome.  JAMA . 1993;  269 2122-2127
  • 30 Taskar V, John J, Evander E, Wollmer P, Robertson B, Jonson B. Healthy lungs tolerate repetitive collapse and reopening during short periods of mechanical ventilation.  Acta Anaesthesiol Scand . 1995;  39 370-376
  • 31 Fu Z, Costello M L, Tsukimoto K. High lung volume increases stress failure in pulmonary capillaries.  J Appl Physiol . 1992;  73 123-133
  • 32 Tremblay L N, Slutsky A S. Ventilatory-induced injury: barotrauma and biotrauma.  Proc Assoc Am Physicians . 1998;  110 482-488
  • 33 Dos Santos C C, Slutsky A S. Invited Review: Mechanisms of ventilator-induced lung injury: a perspective.  J Appl Physiol . 2000;  89 1645-1655
  • 34 Tremblay L, Valenza F, Ribeiro S P, Li J, Slutsky A S. Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model.  J Clin Invest . 1997;  99 944-952
  • 35 Ranieri V M, Suter P M, Tortorella C. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomised controlled trial.  JAMA . 1999;  282 54-61
  • 36 Montgomery A B, Stager M A, Carrico C J, Hudson L D. Causes of mortality in patients with the adult respiratory distress syndrome.  Am Rev Respir Dis . 1985;  132 485-489
  • 37 Chiumello D, Pristine G, Slutsky A S. Mechanical ventilation affects local and systemic cytokines in an animal model of acute respiratory distress syndrome.  Am J Respir Crit Care Med . 1999;  160 10-116
  • 38 Von Bethmann N A, Brasch F, Nüsing R. Hyperventilation induces release of cytokines from perfused mouse lung.  Am J Respir Crit Care Med . 1998;  157 263-272
  • 39 Slutsky A S, Tremblay L N. Multiple system organ failure: is mechanical ventilation a contributing factor?.  Am J Respir Crit Care . 1998;  157 1721-1725
  • 40 Nahum A, Hoyt J, Schmitz L, Moody J, Shapiro R, Marini J J. Effect of mechanical ventilation strategy on dissemination of intratracheally instilled Escherichia coli in dogs.  Crit Care Med . 1997;  25 1733-1743
  • 41 Verbrugge S JC, Sorm V, van 't Veen A, Mouton J W, Gommers D, Lachman B. Lung overinflation without positive end-expiratory pressure promotes bacteremia after experimental Klebsiella pneumoniae inoculation.  Intensive Care Med . 1998;  24 172-177
  • 42 Murphy D B, Cregg N, Tremblay L. Adverse ventilatory strategy causes pulmonary-to-systemic translocation of endotoxin.  Am J Respir Crit Care Med . 2000;  162 27-33
  • 43 Vlahakis N E, Schroeder M A, Limper A H, Hubmayr R D. Stretch induces cytokine release by alveolar epithelial cells in vitro.  Am J Physiol Lung Cell Mol Physiol . 1999;  277 L167-173
  • 44 Parker J C, Ivey C L, Tucker J A. Gadolinium prevents high airway pressure-induced permeability increases in isolated rat lungs.  J Appl Physiol . 1998;  84 1113-1118
  • 45 Lecuona E, Saldías F, Comellas A, Ridge K, Guerrero C, Sznajder J I. Ventilator-associated lung injury decreases lung ability to clear edema in rats.  Am J Respir Crit Care Med . 1999;  159 603-609
  • 46 Waters C M, Ridge K M, Sunio G, Venetsanou K, Sznajder J I. Mechanical stretching of alveolar epithelial cells increases NA+-K+-ATPase activity.  J Appl Physiol . 1999;  87 715-721
  • 47 Grembowicz K P, Sprague D, McNeil P L. Temporary disruption of the plasma membrane is required for c-fos expression in response to mechanical stress.  Molecular Biology of the Cell . 1999;  10 1247-1257
  • 48 Parker J C. Inhibitors of myosin light chain kinase and phosphodiesterase reduce ventilator-induced lung injury.  J Appl Physiol . 2000;  89 2241
  • 49 Quinn D, Tager A, Joseph P M, Bonventre J V, Force T, Hales C A. Stretch-induced mitogen-activated protein kinase activation and interleukin-8 production in type II alveolar cells.  Chest . 1999;  116 89S-90S
  • 50 Nick J A, Avdi N J, Young S K. An intracellular signaling pathway linking lipopolysaccharide stimulation to cellular responses of the human neutrophil: the p38 MAP kinase cascade and its functional significance.  Chest . 1999;  116 54S-55S
  • 51 Shibata K, Cregg N, Engelberts D, Takeuchi A, Fedorko L, Kavanagh B P. Hypercapnic acidosis may attenuate acute lung injury by inhibition of endogenous xanthine oxidase.  Am J Respir Crit Care Med . 1998;  158 1578-1584
  • 52 Laffey J G, Tanaka M, Engelberts D. Therapeutic hypercapnia reduces pulmonary and systemic injury following in vivo lung reperfusion.  Am J Respir Crit Care Med . 2000;  162 2287-2294
  • 53 Lang J D, Chumley P, Eiserich J P. Hypercapnia induces injury to alveolar epithelial cells via a nitric oxide-dependent pathway.  Am J Physiol Lung Cell Mol Physiol . 2000;  279 L994-L1002
  • 54 Tsuno K, Miura K, Takeya M, Kolobow T, Morioka T. Histopathologic pulmonary changes from mechanical ventilation at high peak airway pressures.  Am Rev Respir Dis . 1991;  143 1115-1120
  • 55 Stewart T E, Meade M O, Cook D J, and the Pressure- and Volume-Limited Ventilation Strategy Group. Evaluation of a ventilation strategy to prevent barotrauma in patients at high risk for acute respiratory distress syndrome.  N Engl J Med . 1998;  338 355-361
  • 56 Brower R G, Shanholtz C B, Fessler H E. Prospective, randomised, controlled clinical trial comparing traditional versus reduced tidal volume ventilation in acute respiratory distress syndrome patients.  Crit Care Med . 1999;  27 1492-1498
  • 57 Brochard L, Roudot-Thoraval F, Roupie E, for the Multicenter Trial Group on Tidal Volume Reduction in ARDS. Tidal volume reduction for prevention of ventilator-induced lung injury in acute respiratory distress syndrome.  Am J Respir Crit Care Med . 1998;  158 1831-1838
  • 58 Amato M BP, Barbas C SV, Medeiros D M. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome.  N Engl J Med . 1998;  338 347-354
  • 59 The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome.  N Engl J Med . 2000;  342 1301-1308
  • 60 Lee W L, Detsky A S, Stewart T ES. Lung-protective ventilation in ARDS.  Intensive Care Medicine . 2000;  26 1151-1155
  • 61 Slutsky A S, Ranieri V M. Mechanical ventilation: lessons from the ARDSNet trial.  Respir Res . 2000;  1 73-77
  • 62 Lee W L, Stewart T E. Evaluation of Lung Protective Ventilation Strategies in ARDS.  European Respiratory Monograph (in press).
  • 63 Slutsky A S. Mechanical ventilation [Erratum, Chest 1994;106:656.]  Chest . 1993;  104 1833-1859
  • 64 Zilberberg M D, Epstein S K. Acute lung injury in the medical ICU: comorbid conditions, age, etiology, and hospital outcome.  Am J Respir Crit Care Med . 1998;  157 1159-1164
  • 65 Gattinoni L, Pelosi P, Suter P M, Pedoto A, Vercesi P, Lissoni A. Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease: different syndromes?.  Am J Respir Crit Care Med . 1998;  158 3-11
  • 66 Ranieri V M, Brienza N, Santostasi S. Impairment of lung and chest wall mechanics in patients with acute respiratory distress syndrome: role of abdominal distension.  Am J Respir Crit Care Med . 1997;  156 1082-1091