Semin Liver Dis 2001; 21(4): 563-572
DOI: 10.1055/s-2001-19035
Copyright © 2001 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

The Pathophysiology and Treatment of Hereditary Tyrosinemia Type 1

Markus Grompe
  • Department of Molecular and Medical Genetics, Oregon Health Sciences University, Portland, Oregon
Further Information

Publication History

Publication Date:
17 December 2001 (online)

ABSTRACT

The topic of this review is hepatorenal tyrosinemia (hereditary tyrosinemia type 1 [HT1], or fumarylacetoacetate hydrolase deficiency; OMIM# 276700). HT1 is the most serious and common of the genetic defects in tyrosine degradation. In addition, this disorder has importance as a model of spontaneous self-correction of liver disease, as a model of liver repopulation by transplanted cells and gene therapy, and as a genetic cause of hepatocarcinoma. However, other forms of hypertyrosinemia exist; hence, the differential diagnosis also will be described briefly. Recent years have seen much progress in our understanding of the molecular basis, the pathophysiology, and especially the treatment of HT1. The current intervention with 2-(2-nitro-4-trifluoro-methylbenzyol)-1,3 cyclohexanedione (NTBC) therapy has improved the outcome of this once devastating disorder. The successful repopulation of the HT1 liver with transplanted cells and positive results in the use of gene therapy in animal models may someday lead to therapy in humans that will obviate the need for life-long dietary and pharmacological therapy.

REFERENCES

  • 1 Mitchell G A, Grompe M, Lambert M. Hypertyrosinemia. In: Scriver CR, Beaudet AL, Sly W, Valle D, eds. The Metabolic and Molecular Basis of Inherited Disease, 9th ed New York: McGraw-Hill 2001: 1777-1805
  • 2 Levine S Z, Marples E, Gordon H H. A defect in the metabolism of aromatic amino acids in premature infants: The role of vitamin C.  Science . 1939;  90 620
  • 3 Kvittingen E. Hereditary tyrosinemia type I-an overview.  Scand J Clin Lab Invest . 1986;  46 27-34
  • 4 Russo P, O'Regan S. Visceral pathology of hereditary tyrosinemia type I.  Am J Hum Genet . 1990;  47 317-324
  • 5 Mitchell G, Larochelle J, Lambert M. Neurologic crises in hereditary tyrosinemia.  N Engl J Med . 1990;  322 432-437
  • 6 Croffie J M, Gupta S K, Chong S K. Tyrosinemia type 1 should be suspected in infants with severe coagulopathy even in the absence of other signs of liver failure.  Pediatrics . 1999;  103 675-678
  • 7 De Braekeleer M, Larochelle J. Genetic epidemiology of hereditary tyrosinemia in Quebec and in Saguenay-Lac-St-Jean.  Am J Hum Genet . 1990;  47 302-307
  • 8 Phaneuf D, Labelle Y, Bérubé D. Cloning and expression of the cDNA encoding human fumarylacetoacetae hydrolase, the enzyme deficient in hereditary tyrosinemia: assignment of the gene to chromosome 15.  Am J Hum Genet . 1991;  48 525-535
  • 9 Labelle Y, Phaneuf D, Leclerc B. Characterization of the human fumarylacetoacetate hydrolase gene and identification of a missense mutation abolishing enzymatic activity.  Hum Mol Genet . 1993;  2 941-946
  • 10 St-Louis M, Leclerc B, Laine J. Identification of a stop mutation in five Finnish patients suffering from hereditary tyrosinemia type I.  Hum Mol Genet . 1994;  3 69-72
  • 11 Grompe M, St-Louis M, Demers S I. A single mutation of the fumarylacetoacetate hydrolase gene in French Canadians with hereditary tyrosinemia type I.  N Engl J Med . 1994;  331 353-357
  • 12 Jakobs C, Stellaard F, Kvittingen E A. First-trimester prenatal diagnosis of tyrosinemia type I by amniotic fluid succinylacetone determination.  Prenat Diagn . 1990;  10 133-134
  • 13 Grenier A, Cederbaum S, Laberge C. A case of tyrosinaemia type I with normal level of succinylacetone in the amniotic fluid.  Prenat Diagn . 1996;  16 239-242
  • 14 Kvittingen E A, Steinmann B, Gitzelmann R. Prenatal diagnosis of hereditary tyrosinemia by determination of fumarylacetoacetase in cultured amniotic fluid cells.  Pediatr Res . 1985;  19 334-337
  • 15 Demers S I, Phaneuf D, Tanguay R M. Hereditary tyrosinemia type I: strong association with haplotype 6 in French Canadians permits simple carrier detection and prenatal diagnosis.  Am J Hum Genet . 1994;  55 327-333
  • 16 Rootwelt H, Kvittingen E A, Hoie K. The human fumarylacetoacetase gene: characterisation of restriction fragment length polymorphisms and identification of haplotypes in tyrosinemia type 1 and pseudodeficiency.  Hum Genet . 1992;  89 229-233
  • 17 Demers S I, Phaneuf D, Tanguay R M. TaqI RFLP for the human fumarylacetoacetate hydrolase (FAH) gene.  Nucleic Acids Res . 1991;  19 1352
  • 18 Demers S I, Tanguay R M. MspI RFLP in the human fumarylacetoacetate hydrolase (FAH) gene.  Nucleic Acids Res . 1991;  19 6971
  • 19 Demers S I, Tanguay R M. Bg1II RFLP for the human fumarylacetoacetate hydrolase (FAH) gene.  Nucleic Acids Res . 1991;  19 1965
  • 20 Hutchesson A C, Hall S K, Preece M A, Green A. Screening for tyrosinaemia type I.  Arch Dis Child Fetal Neonatal Ed . 1996;  74 F191-F194
  • 21 Belanger M, Saint H B, Belanger L. A system of early screening for inborn errors of metabolism: methods and results for hereditary tyrosinemia.  Union Med Can . 1973;  102 294-302
  • 22 Bain M D, Purkiss P, Jones M. Dietary treatment eliminates succinylacetone from the urine of a patient with tyrosinemia type I.  Eur J Pediatr . 1990;  149 637-639
  • 23 Murcia F J, Vazquez J, Gamez M. Liver transplantation in type I tyrosinemia.  Transplant Proc . 1995;  27 2301-2302
  • 24 Esquivel C O, Mieles L, Marino I R. Liver transplantation for hereditary tyrosinemia in the presence of hepatocellular carcinoma.  Transplant Proc . 1989;  21 2445-2446
  • 25 van Thiel H D, Gartner L M, Thorp F K. Resolution of the clinical features of tyrosinemia following orthotopic liver transplantation for hepatoma.  J Hepatol . 1986;  3 42-48
  • 26 Horwich A L. Inherited hepatic enzyme defects as candidates for liver-directed gene therapy.  Curr Top Microbiol Immunol . 1991;  168 185-200
  • 27 Lock E A, Ellis M K, Gaskin P. From toxicological problem to therapeutic use: the discovery of the mode of action of 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC), its toxicology and development as a drug.  J Inherit Metab Dis . 1998;  21 498-506
  • 28 Lindstedt S, Holme E, Lock E A. Treatment of hereditary tyrosinaemia type I by inhibition of 4-hydroxyphenylpyruvate dioxygenase.  Lancet . 1992;  340 813-817
  • 29 Holme E, Lindstedt S. Tyrosinaemia type I and NTBC (2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione).  J Inherit Metab Dis . 1998;  21 507-517
  • 30 Origuchi Y, Endo F, Kitano A. Sural nerve lesions in a case of hypertyrosinemia.  Brain Dev . 1982;  4 463
  • 31 Giardini O, Cantani A, Kennaway N G. Chronic tyrosinemia associated with 4-hydroxyphenylpyruvate dioxygenase deficiency with acute intermittent ataxia and without visceral and bone involvement.  Pediatr Res . 1983;  17 25-29
  • 32 Fois A, Borgogni P, Cioni M. Presentation of the data of the Italian registry for oculocutaneous tyrosinaemia.  J Inherit Metab Dis . 1986;  9 262
  • 33 Kvittingen E A, Rootwelt H, Brandtzaeg P. Hereditary tyrosinemia type I. Self-induced correction of the fumarylacetoacetase defect.  J Clin Invest . 1993;  91 1816-1821
  • 34 Kvittingen E A, Rootwelt H, Berger R. Self-induced correction of the genetic defect in tyrosinemia type I.  J Clin Invest . 1994;  94 1657-1661
  • 35 Poudrier J, Lettre F, Scriver C R. Different clinical forms of hereditary tyrosinemia (type I) in patients with identical genotypes.  Mol Genet Metab . 1998;  64 119-125
  • 36 Overturf K, Al-Dhalimy M, Tanguay R. Hepatocytes corrected by gene therapy are selected in vivo in a murine model of hereditary tyrosinaemia type I.  Nat Genet . 1996;  12 266-273
  • 37 Knox W E, Edwards S W. Enzymes involved in conversion of tyrosine to acetoacetate.  Methods Enzymol . 1955;  2 287-300
  • 38 Edwards S W, Knox W E. Homogentisate metabolism: the isomerization of maleylacetoacetate by an enzyme which requires glutathione.  J Biol Chem . 1956;  220 79
  • 39 Knox W E, Edwards S W. Homogentisate oxidase of liver.  J Biol Chem . 1955;  216 479-487
  • 40 Timm D E, Mueller H A, Bhanumoorthy P. Crystal structure and mechanism of a carbon-carbon bond hydrolase.  Structure Fold Des . 1999;  7 1023-1033
  • 41 Bateman R L, Bhanumoorthy P, Witte J F. Mechanistic inferences from the crystal structure of fumarylacetoacetate hydrolase with a bound phosphorus-based inhibitor.  J Biol Chem . 2001;  276 15284-15291
  • 42 Lindblad B, Lindstedt S, Steen G. On the enzymic defects in hereditary tyrosinemia.  Proc Natl Acad Sci USA . 1977;  74 4641-4645
  • 43 La Du N B, Zannoni V G, Laster L. The nature of the defect in tyrosine metabolism in alkaptonuria.  J Biol Chem . 1958;  230 251-260
  • 44 Rehak A, Selim M M, Yadav G. Richner-Hanhart syndrome (tyrosinaemia-II) (report of four cases without ocular involvement).  Br J Dermatol . 1981;  104 469-475
  • 45 Bienfang D C, Kuwabara T, Pueschel S M. The Richner-Hanhart syndrome: report of a case with associated tyrosinemia.  Arch Ophthalmol . 1976;  94 1133-1137
  • 46 Endo F, Katoh H, Matsuda I. Putative genetic deficiency of 4-hydroxyphenylpyruvic acid dioxygenase in mice: a murine model for hereditary tyrosinaemia type III.  J Inherit Metab Dis . 1990;  13 780-782
  • 47 Cerone R, Holme E, Schiaffino M C. Tyrosinemia type III: diagnosis and ten-year follow-up.  Acta Paediatr . 1997;  86 1013-1015
  • 48 Ruppert S, Kelsey G, Schedl A. Deficiency of an enzyme of tyrosine metabolism underlies altered gene expression in newborn liver of lethal albino mice.  Genes Dev . 1992;  6 1430-1443
  • 49 Kubo S, Sun M, Miyahara M. Hepatocyte injury in tyrosinemia type 1 is induced by fumarylacetoacetate and is inhibited by caspase inhibitors.  Proc Natl Acad Sci USA . 1998;  95 9552-9557
  • 50 Sun M S, Hattori S, Kubo S. A mouse model of renal tubular injury of tyrosinemia type 1: development of de Toni Fanconi syndrome and apoptosis of renal tubular cells in Fah/Hpd double mutant mice.  J Am Soc Nephrol . 2000;  11 291-300
  • 51 Jorquera R, Tanguay R M. Cyclin B-dependent kinase and caspase-1 activation precedes mitochondrial dysfunction in fumarylacetoacetate-induced apoptosis.  FASEB J . 1999;  13 2284-2298
  • 52 Schmid W, Müller G, Schütz G. Deletions near the albino locus on chromosome 7 of the mouse affect the level of tyrosine aminotransferase mRNA.  Proc Natl Acad Sci USA . 1985;  82 2866-2869
  • 53 Gluecksohn-Waelsch S. Genetic control of morphogenetic and biochemical differentiation: lethal albino deletions in the mouse.  Cell . 1979;  16 225-237
  • 54 Loose D S, Shaw P A, Krauter K S. Trans regulation of the phosphoenolpyruvate carboxykinase (GTP) gene, identified by deletions in chromosome 7 of the mouse.  Proc Natl Acad Sci USA . 1986;  83 5184-5188
  • 55 Sala-Trepat J M, Poiret M, Sellem C H, Bessada R. A lethal deletion on mouse chromosome 7 affects regulation of liver cell-specific functions: posttranscriptional control of serum protein and transcriptional control of aldolase B synthesis.  Proc Natl Acad Sci USA . 1985;  82 2442-2446
  • 56 Ruppert S, Boshart M, Bosch F X. Two genetically defined trans-acting loci coordinately regulate overlapping sets of liver-specific genes.  Cell . 1990;  61 895-904
  • 57 Fornace Jr J A, Nebert D W, Hollander M C. Mammalian genes coordinately regulated by growth arrest signals and DNA-damaging agents.  Mol Cell Biol . 1989;  9 4196-203
  • 58 Petersen D D, Gonzalez F J, Rapic V. Marked increases in hepatic NAD(P)H: oxidoreductase gene transcription and mRNA levels correlated with a mouse chromosome 7 deletion.  Proc Natl Acad Sci USA . 1989;  86 6699-6703
  • 59 Nebert D W, Roe A L, Dieter M Z. Role of the aromatic hydrocarbon receptor and [Ah] gene battery in the oxidative stress response, cell cycle control, and apoptosis.  Biochem Pharmacol . 2000;  59 65-85
  • 60 Vasiliou V, Puga A, Chang C Y. Interaction between the Ah receptor and proteins binding to the AP-1-like electrophile response element (EpRE) during murine phase II [Ah] battery gene expression.  Biochem Pharmacol . 1995;  50 2057-2068
  • 61 Spencer P D, Roth K S. Effects of succinylacetone on amino acid uptake in the rat kidney.  Biochem Med Metab Biol . 1987;  37 101-109
  • 62 Spencer P D, Medow M S, Moses L C. Effects of succinylacetone on the uptake of sugars and amino acids by brush border vesicles.  Kidney Int . 1988;  34 671-677
  • 63 Jorquera R, Tanguay R M. The mutagenicity of the tyrosine metabolite, fumarylacetoacetate, is enhanced by glutathione depletion.  Biochem Biophys Res Commun . 1997;  232 42-48
  • 64 Manning K, Al-Dhalimy M, Finegold M. In vivo suppressor mutations correct a murine model of hereditary tyrosinemia type I.  Proc Natl Acad Sci USA . 1999;  96 11928-11933
  • 65 Sassa S, Kappas A. Succinylacetone inhibits delta-aminolevulinate dehydratase and potentiates the drug and steroid induction of delta-aminolevulinate synthase in liver.  Trans Assoc Am Physicians . 1982;  95 42-52
  • 66 Russell L B, Russell W L, Kelly E M. Analysis of the albino-locus region of the mouse. Origin and viability.  Genetics . 1979;  91 127-139
  • 67 Niswander L, Kelsey G, Schedl A. Molecular mapping of albino deletions associated with early embryonic lethality in the mouse.  Genomics . 1991;  9 162-169
  • 68 Grompe M, Al-Dhalimy M, Finegold M. Loss of fumarylacetoacetate hydrolase is responsible for the neonatal hepatic dysfunction phenotype of lethal albino mice.  Genes Dev . 1993;  7 2298-2307
  • 69 Grompe M, Lindstedt S, al-Dhalimy M. Pharmacological correction of neonatal lethal hepatic dysfunction in a murine model of hereditary tyrosinaemia type I.  Nat Genet . 1995;  10 453-460
  • 70 Grompe M, Overturf K, Al-Dhalimy M. Therapeutic trials in the murine model of hereditary tyrosinemia type I: a progress report.  J Inher Metab Dis . 1998;  21 518-531
  • 71 Overturf K, al-Dhalimy M, Ou C N. Adenovirus-mediated gene therapy in a mouse model of hereditary tyrosinemia type I.  Hum Gene Ther . 1997;  8 513-521
  • 72 Overturf K, Al-Dhalimy M, Manning K. Ex vivo hepatic gene therapy of a mouse model of hereditary tyrosinemia type I.  Hum Gene Ther . 1998;  9 295-304
  • 73 Chen S J, Tazelaar J, Moscioni A D. In vivo selection of hepatocytes transduced with adeno-associated viral vectors.  Mol Ther . 2000;  1 414-422
  • 74 Overturf K, Al-Dhalimy M, Finegold M. The repop- ulation potential of hepatocyte populations differing in size and prior mitotic expansion.  Am J Pathol . 1999;  155 2135-2143
  • 75 Grompe M, Al-Dhalimy M, Overturf K. Hepatic repopulation by adult murine pancreatic liver stem cells.  Am J Hum Genet . 1998;  63 9
  • 76 Overturf K, Al-Dhalimy M, Ou C N. Serial transplantation reveals the stem-cell-like regenerative potential of adult mouse hepatocytes.  Am J Pathol . 1997;  151 1273-1280
  • 77 Wang X, Al-Dhalimy M, Lagasse E. Liver repopulation and correction of metabolic liver disease by transplanted adult mouse pancreatic cells.  Am J Pathol . 2001;  158 571-579
  • 78 Lagasse E, Connors H, Al-Dhalimy M. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo.  Nat Med . 2000;  6 1229-1234
  • 79 Grompe M. Liver repopulation for the treatment of metabolic diseases.  J Inherit Metab Dis . 2001;  24 231-244
  • 80 Grompe M, Laconi E, Shafritz D A. Principles of therapeutic liver repopulation.  Semin Liver Dis . 1999;  19 7-14
  • 81 Fernandez-Canon J M, Penalva M A. Fungal metabolic model for human type I hereditary tyrosinaemia.  Proc Natl Acad Sci USA . 1995;  92 9132-9136
  • 82 Fernandez-Canon J M, Penalva M A. Molecular characterization of a gene encoding a homogentisate dioxygenase from Aspergillus nidulans and identification of its human and plant homologues.  J Biol Chem . 1995;  270 21199-21205
  • 83 Fernandez-Canon J M, Penalva M A. Characterization of a fungal maleylacetoacetate isomerase gene and identification of its human homologue.  J Biol Chem . 1998;  273 329-337
  • 84 Garrod A E. The incidence of alkaptonuria: a study in chemical individuality.  Lancet . 1902;  2 1616-1620
  • 85 Fernandez-Canon J M, Granadino B, Beltran-Valero de Bernabe D. The molecular basis of alkaptonuria.  Nat Genet . 1996;  14 19-24