Subscribe to RSS
DOI: 10.1055/s-2001-19041
Visualization of the Macroscopic Structure of Hyaline Cartilage with MR Imaging
Publication History
Publication Date:
17 December 2001 (online)
ABSTRACT
The extracellular matrix of any tissue, including hyaline cartilage, has a structure that allows it to meet the physical demands placed upon that tissue. Accordingly, the structure of hyaline cartilage is not uniform. There is considerable variation from one joint to the next and even within a particular joint surface, probably reflecting a joint-specific architecture. This structure has a strong influence on T2 relaxation. The relationship between T2 and matrix curvature relative to the main magnetic field (B0) provides tissue contrast. Images obtained with adequate resolution can exploit this contrast and demonstrate the structure of cartilage. Magnetic resonance imaging is thus capable of providing a detailed description of the structure of joint surfaces, information that is difficult to obtain even with histologic techniques.
KEYWORD
Cartilage - magnetic resonance imaging - collagen structure
REFERENCES
- 1 Bullough P G. The pathology of osteoarthritis. In: Moskowitz RW, Howell DS, Goldberg VM, Mankin HJ, eds. Osteoarthritis, Diagnosis and Medical/Surgical Management, 2nd ed Philadelphia: WB Saunders 1992: 39-69
- 2 Buckwalter J A, Mankin H J. Articular cartilage, part I: tissue design and chondrocyte-matrix interactions. J Bone Joint Surg . 1997; 79-A 600-611
- 3 Mow V C, Ratcliffe A, Poole A R. Cartilage and diarthroidial joints as paradigms for hierarchical materials and structures. Biomaterials . 1992; 13 67-92
- 4 Rubenstein J D, Kim J K, Morova-Protzner I, Stanchev P L, Henkelman R M. Effects of collagen orientation on MR imaging characteristics of bovine articular cartilage. Radiology . 1993; 188 219-226
- 5 Buckwalter J A, Mow V C. Cartilage repair in osteoarthritis. In: Moskowitz RW, Howell DS, Goldberg VM, Mankin HJ, eds. Osteoarthritis, Diagnosis and Medical/Surgical Management, 2nd ed Philadelphia: WB Saunders 1992: 71-107
- 6 Mow V, Holmes M, Lai W. Fluid transport and mechanical properties of articular cartilage: a review. J Biochem . 1984; 17 377-394
- 7 Akeson W H, Amiel D, Gershuni D H. Articular cartilage physiology and metabolism. In: Resnick D, ed. Diagnosis of Bone and Joint Disorders, vol 2, 3rd ed Philadelphia: WB Saunders 1995: 769-790
- 8 Clarke I C. Articular cartilage: a review and scanning electron microscopy study 1. The interterritorial fibrillar architecture. J Bone Joint Surg . 1971; 53B 732-750
- 9 Maroudas A, Muir A, Wingham J. The correlation of fixed negative charge with glycosaminoglycan content of human articular cartilage. Biochem Biophys Acta . 1969; 177 492-500
- 10 Paul P K, Jasani M K, Sebok D, Rakhit A, Dunton A W, Douglas F L. Variation in MR signal intensity across normal human knee cartilage. J Magn Reson Imag Eng . 1993; 3 569-574
- 11 Redler I, Mow V, Zimny M. The ultrastructure and biomechanical significance of the tidemark of articular cartilage. Clin Orthop . 1975; 112 357-362
- 12 Zambrano N, Montes G, Shigihara K, Sanchez E, Junqueira L. Collagen arrangement in cartilages. Acta Anat . 1982; 113 26-38
- 13 Boyde A, Jones S. Scanning electron microscopy of cartilage. In: Hall B, ed. Cartilage: Structure, Function and Biochemistry, vol 1 New York: Academic Press 1983: 105-148
- 14 Debont L, Liem R, Havinga P, Boering G, Vanderkorst J. Collagenous network in cartilage of human femoral condyles-a light microscopic and scanning electron-microscopic study. Acta Anat . 1986; 126 41-47
- 15 Jeffery A K, Blunn G W, Archer C W, Bentley G. Three-dimensional collagen architecture in bovine articular cartilage. J Bone Joint Surg . 1991; 73-B 795-801
- 16 Teshima R, Otsuka T, Takasu N, Yamagata N, Yamamoto K. Structure of the most superficial layer of articular cartilage. J Bone Joint Surg . 1995; 77-B 460-464
- 17 Minns R J, Steven F S. The collagen fibril organization in human articular cartilage. J Anat . 1977; 123 437-457
- 18 Clark J M. The organization of collagen in cryofractured rabbit articular cartilage: a scanning electron microscopic study. J Orthop Res . 1985; 3 17-29
- 19 Clark J M, Simonian P T. Scanning electron microscopy of ``fibrillated'' and ``malacic'' human articular cartilage: technical considerations. Microsc Res Tech . 1997; 37 299-313
- 20 Clark J M. Variation of collagen fiber alignment in a joint surface: a scanning electron microscope study of the tibial plateau in dog, rabbit, and man. J Orthop Res . 1991; 9 246-257
- 21 Kaab M J, Gwynn I A, Notzli H P. Collagen fiber arrangement in the tibial plateau articular cartilage of man and other mammalian species. J Anat . 1998; 193 23-34
- 22 Benninghoff A. Form und bau der gelenkknorpel in ihren beziehungen zur funktion. Anat Entwicklungsgesch . 1925; 76 43
- 23 Hultkrantz W. Uber die spaltrichtungen der gelenkknorpel. Verhandlungen der anatomischen gesellschaft . 1898; 12 248
- 24 Xia Y, Farquhar T, Burton-Wurster N, Lust G. Origin of cartilage laminae in MRI. J Magn Reson Imag . 1997; 7 887-894
- 25 Freeman D M, Bergman G, Glover G. Short TE MR microscopy: accurate measurement and zonal differentiation of normal hyaline cartilage. Magn Reson Med . 1997; 38 72-81
- 26 Xia Y. Relaxation anisotropy in cartilage by NMR microscopy (μMRI) at 14-μm resolution. Magn Reson Med . 1998; 39 941-949
- 27 Xia Y, Farquhar T, Burton-Wurster N, Ray E, Jelinski L W. Diffusion and relaxation mapping of cartilage-bone plugs and excised disks using microscopic magnetic resonance imaging. Magn Reson Med . 1994; 31 273-282
- 28 Goodwin D W, Wadghiri Y Z, Dunn J F. Micro-imaging of articular cartilage: T2, proton density and the magic angle effect. Acad Radiol . 1998; 5 790-798
- 29 Henkelman R M, Stanisz G J, Kim J K, Bronskill M J. Anisotropy of NMR properties of tissues. Magn Reson Med . 1994; 32 592-601
- 30 Mlynarik V, Degrassi A, Toffanin R, Vittur F, Cova M, Pozzi-Mucelli R S. Investigation of laminar appearance of articular cartilage by means of magnetic resonance microscopy. Magn Reson Imag . 1996; 14 435-442
- 31 Kim D J, Suh J-S, Jeong E-K, Shin K-H, Yang W I. Correlation of laminated MR appearance of articular cartilage with histology, ascertained by artificial landmarks on the cartilage. J Magn Reson Imag . 1999; 10 57-64
- 32 Grunder W, Wagner M, Werner A. MR-microscopic visualization of anisotropic internal cartilage structures using the magic angle technique. Magn Reson Med . 1998; 39 376-382
- 33 Peterfy C G. Scratching the surface: articular cartilage disorders in the knee. Magn Reson Imag Clin North Am . 2000; 8 409-430
- 34 Xia Y. Magic-angle effect in magnetic resonance imaging of articular cartilage: a review. Invest Radiol . 2000; 35 602-621
- 35 Rubenstein J D, Kim J K, Henkelman R M. Effects of compression and recovery on bovine articular cartilage: appearance on MR images. Radiology . 1996; 201 843-850
- 36 Goodwin D W, Zhu H, Dunn J F. In vivo MR imaging of hyaline cartilage: correlation with scanning electron microscopy. Am J Roentgenol . 2000; 174 405-409
-
37 Goodwin D W, Ziam-Wadghiri Y, Zhu H, Vinton C J, Smith E D, Dunn J F. The influence of collagen organization on the MR appearance of cartilage: correlation with scanning electron microscopy. Paper presented at 84th Scientific Assembly, Radiological Society of North America, 1998; Chicago
- 38 Goodwin D W, Zhu H, Dunn J F. MR imaging of articular cartilage: striations in the radial layer reflect the fibrous structure of cartilage. Paper presented at: 7th Annual Meeting, Proc Int Soc Magn Reson Med, Philadelphia 1999
- 39 Goodwin D W, Lei H, Dunn J F. Vertical striations in the radial layer of MR images of hyaline cartilage are due to T2 effects. Paper presented at: 9th Annual Meeting, Proc Int Soc Magn Reson Med, Glasgow, Scotland 2001
- 40 Foster J E, Maciewicz R A, Taberner J. Structural periodicity in human articular cartilage: comparison between magnetic resonance imaging and histological findings [see comments]. Osteoarth Cartil . 1999; 7 480-485
-
41 Kaufman J, Cecil K, Kneeland J, Bolinger L. Structure in images of articular cartilage at 4T. Paper presented at Proceedings of the International Society for Magnetic Resonance in Medicine, fourth scientific meeting, 1996; New York
- 42 Gwynn I, Wade S, Kaab M J, Owen G R, Richards R G. Freeze-substitution of rabbit tibial articular cartilage reveals that radial zone collagen fibres are tubules. J Microsc . 2000; 197 159-172
- 43 Xia Y. Heterogeneity of cartilage laminae in MR imaging. J Magn Reson Imag . 2000; 11 686-693
- 44 Kempson G E, Muir H, Pollard C, Tuke M. The tensile properties of the cartilage of human femoral condyles related to the content of collagen and glycosaminoglycans. Biochim Biophys Acta . 1973; 297 456-472
- 45 Woo S LY, Akeson W H, Jemmott G F. Measurements of nonhomogeneous, directional mechanical properties of articular cartilage in tension. J Biomech . 1976; 9 785-791
- 46 Woo S LY, Lubock P, Gomez M A, Jemmott G F, Kuei S C, Akeson W H. Large deformation nonhomogeneous and directional properties of articular cartilage in uniaxial tension. J Biomech . 1979; 12 437-446
- 47 Bredella M A, Tirman P F, Peterfy C G. Accuracy of T2-weighted fast spin-echo MR imaging with fat saturation in detecting cartilage defects in the knee: comparison with arthroscopy in 130 patients. Am J Roentgenol . 1999; 172 1073-1080
- 48 Broderick L S, Turner D A, Renfrew D L, Schnitzer T J, Huff J P, Harris C. Severity of articular cartilage abnormality in patients with osteoarthritis: evaluation with fast spin-echo MR vs arthroscopy. Am J Roentgenol . 1994; 162 99-103
- 49 Rose P M, Demlow T A, Szumowski J, Quinn S F. Chondromalacia patellae: fat-suppressed MR imaging. Radiology . 1994; 193 437-440