Subscribe to RSS
DOI: 10.1055/s-2001-19172
Georg Thieme Verlag Stuttgart · New York
Neue Perspektiven in der intrauterinen Überwachung mittels fetalem Magnetenzephalogramm
Fetal Magnetic Encephalography: A New Tool for Intrauterine Fetal Monitoring?Publication History
Publication Date:
19 December 2001 (online)
Zusammenfassung
Fragestellung
Bis heute ist es trotz intensiver Forschung und Überwachung nicht gelungen, die Rate an hirngeschädigten Neugeborenen entscheidend zu senken. Nach heutigem Kenntnisstand sind ca. 90 % der fetalen Hirnschäden Folge antepartaler Ereignisse. Demzufolge können auch nur 10 % durch eine intensivierte Überwachung unter der Geburt vermieden werden.
Die Detektion einer antepartalen zerebralen Schädigung ist ein seltenes Ereignis, wobei über das Schädigungsausmaß nur Vermutungen angestellt werden können. Eine Überwachung der neuronalen Integrität des heranwachsenden Feten ist bis heute nicht möglich. Es ist unklar, wann und bei welchen Feten es zu einer intrauterinen Hirnschädigung kommt und welche Bedeutung diese für die spätere kindliche Entwicklung haben wird. In dieser Publikation wird ein neu entwickeltes Gerät vorgestellt, mit dem intrauterin die fetale neuronale Funktion erfasst werden kann.
Methodik und Ergebnisse
Mit einem neuen diagnostischen Ansatz, der Aufzeichnung des fetalen Magnetenzephalogrammes (fMEG), kann erstmals mit einem speziell für die Erfordernisse der Geburtshilfe entwickelten System eine Aussage zur fetalen Hirnfunktion getroffen werden. Mittels 151 Messsensoren ist es möglich, die biomagnetischen Signale, die von Mutter und Fetus erzeugt werden, aufzunehmen und aus diesen das fMEG zu extrahieren. Die Geräteentwicklung und -evaluation erfolgt zur Zeit in Little Rock, Arkansas, USA in Kooperation mit dem Institut für medizinische Psychologie und Verhaltensneurobiologie und der Frauenklinik der Universität Tübingen. Das mit diesem Gerät registrierte Signal besteht neben dem fetalen neuronalen Signal aus mehreren Komponenten (z. B. maternales Kardiogramm, fetales Kardiogramm), die aus dem Rohdatenmaterial extrahiert werden müssen. Es werden erste Ergebnisse und sich daraus ergebende Fragestellungen präsentiert.
Schlussfolgerung/Ausblick
Mit dem fMEG könnte ein Einblick in die Entwicklung der zerebralen Funktion während der fetalen intrauterinen Entwicklung gewonnen werden. Neue zukunftweisende Überwachungskriterien könnten erstmals die Sicherung der normalen zerebralen Entwicklung gewährleisten und gleichzeitig einen neuen Parameter für die Überwachung von zerebral bedrohten Feten darstellen.
Abstract
Purpose
Intensive research and subpartal surveillance have failed to reduce the rate of newborns with cerebral handicaps. The evidence indicates that about 90 % of cerebral handicaps are due to antepartal events and thus that only 10 % could potentially be avoided by better surveillance during labor. Cerebral injury is rarely detected prenatally and its impact difficult to predict because we do not have a way to assess neuronal function in the developing fetus. We describe a new diagnostic approach which may provide more information on the cerebral well-being of the fetus.
Methods and Results
A system was developed to record fetal magnetencephalographic signals and thus detect fetal brain function. An array of 151 sensors was designed to fit to the pregnant body and record the fetal magnetic encephalogram. We present initial results and discuss arising questions.
Conclusion
The early data suggest that fetal magnetencephalography can provide insights into the fetal neuronal development and well-being during pregnancy.
Schlüsselwörter
Fetale Überwachung - fetales MEG - Magnetenzephalogramm - Hirnfunktion
Key words
Fetal surveillance - Fetal MEG - Magnetencephalogram - Brain function
Literatur
- 1 Bendat J S, Piersol A G. Random Data: Analysis and Measurement Procedures. 3rd ed. New York; John Wiley and Sons, Inc 2000
- 2 Beverely D W, Smith I S, Beesley P, Jones J, Rhodes N. Relationship of cranial ultrasonography, visual and auditory evoked responses with neurodevelopmental outcome. Dev Med Child Neurol. 1990; 32 210-222
- 3 Blum T, Saling E, Bauer R. First magnetoencephalographic recordings of the brain activity of the human fetus. Br J Obstet Gynaecol. 1985; 92 1224-1229
-
4 Clancy R R.
Electroencephalography in the premature and full-term infant. Polin RA, Fox NW Fetal and Neonatal Physiology. Philadelphia; WB Saunders Co 1992: 1540-1559 - 5 Connolly M B, Jan J E, Cochrane D D. Rapid recovery from cortical visual impairment following correction of prolonged shunt malfunction in congenital hydrocephalus. Archives of Neurology. 1991; 48 156-957
- 6 DeCasper A J, Fifer W P. Of human bonding: Newborns prefer their mothers voices. Science. 1980; 208 1174-1176
- 7 DeCasper A J, Spence M J. Prenatal maternal speech influences newborn's perception of speech sounds. Infant Behavior and Development. 1986; 9 133-150
- 8 Devlin B, Daniels M, Roeder K. The heritability of IQ. Nature. 1997; 388 468-471
- 9 Diaz F, Zuron M. Auditory evoked potentials in Down's syndrome. Electroencephalogr Clin Neurophysio. 1995; 96 526-537
- 10 Djelmis J, Dranzancic A, Durrigl V, Ivansenic M. The effect of fetal hypoxia and acidosis on the changes in fetal electroencephalogram during labor. Am J Perinatol. 1988; 5 177-185
- 11 Dustman R E, Callner D A. Cortical evoked responses and response decrement in nonretarded and Down's syndrome individuals. Amer J Mental Deficiency. 1979; 83 391-397
- 12 Ehle A, Sklar F. Visual evoked potentials in infants with hydrocephalus. Neurology. 1979; 29 1541-1544
- 13 Eken P, Nieuwenhuizen O, Van Der Graaf Y, Schalij-Delfos N E, De Vries L S. Relation between neonatal cranial ultrasound abnormalities and cerebral visual impairment in infancy. Dev Med Child Neurol. 1994; 36 3-15
- 14 Eswaran H, Lowery C L, Robinson S E, Wilson J D, Cheyne D, McKenzie D. Challenges of recording human fetal auditory evoked response using magnetencephalography. J Maternal-Fetal Med. 2000; 9 1-5
- 15 Freeman J M. Prenatal and Perinatal Factors Associated with Brain Disorders. National Institutes of Health Publication Bethesda. 1985; 85 1149
- 16 Goelz R, Pinkert B, Meisner C, Speer C P. Neonatal mortality, ICH and risk factors from 1984 to 1996. Pediatric Research. 1998; 44 444
- 17 Groß W, Kähler C, Koch K, Nowak H, Michels M, Seewald H J. Akustisch ausgelöste hirnmagnetische Aktivitäten bei normotrophen und wachstumsretardierten Feten im III. Trimenon der Schwangerschaft. Z Geburtsh Neonatol. 1999; 203 69-72
- 18 Hall J G. On the neuropathologic changes in the central nervous system following neonatal asphyxia - with special reference to the auditory system in man. Acta Otolaryngol. 1964; 188 (Suppl) 331-339
- 19 Hykin J, Moore R, Duncan K, Clare S, Baker P, Johnson I, Bowtell R, Mansfield P, Gowland P. Fetal brain activity demonstrated by functional magnetic resonance imaging. Lancet. 1999; 354 645-646
- 20 Jensen O H. Fetal heart rate response to a controlled sound stimulus as a measure of fetal well-being. Acta Obstet Gynecol Scand. 1984; 63 97-101
- 21 Kok H J, den Ouden A L, Verloove Vanhorick S P, Brand R. Outcome of very preterm small for gestational age infants: the first nine years of life. Br J Obstet Gynaecol. 1998; 105 162-168
- 22 Krägeloh-Mann I, Hagberg B, Petersen D, Riethmüller J, Gut E, Michaelis R. Bilateral spastic cerebral palsy - pathogenetic aspects from MRI. Neuropediatrics. 1992; 23 46-48
-
23 Krägeloh-Mann I, Niemann G, Toft P, Andresen J.
Morphologic correlates of learning disabilities in cerebral palsy with/without persistent deficits. Velickovic Perat M New Developments in Child Neurology. The Presentations of the VIII International Child Neurology Congress. Bologna; Monduzzi Editore 1998: 647-650 - 24 Krägeloh-Mann I, Petersen D, Hagberg G, Vollmer B, Hagberg B, Michaelis R. Bilateral spastic cerebral palsy - MRI pathology and origin. Analysis from a representative series of 56 cases. Dev Med Child Neurol. 1995; 38 379-397
- 25 Krägeloh-Mann I, Toft P, Lunding J, Andresen J, Pryds O, Lou H C. Brain lesions in preterms - origin, consequences, and compensation. Acta Paediatr. 1999; 88 897-908
- 26 Kuenzle C, Baenzinger O, Martin E, Thun-Hohenstein L, Steinlin M, Good M, Fanconi S, Boltshauser E, Largo R H. Prognostic value of early MR Imaging in term infants with severe perinatal asphyxia. Neuropediatrics. 1994; 25 191-200
- 27 Kurtzberg D, Hilpert P L, Kreutzer J A, Vaughan H G. Differential maturation of cortical auditory evoked potentials to speech sounds in normal fullterm and very low-birthweight infants. Dev Med Child Neurol. 1984; 26 466-475
- 28 Lengle J M, Chen M, Wakai R T. Improved neuromagnetic detection of fetal and neonatal auditory evoked responses. Clin Neurophysiol. 2001; 112 785-792
- 29 Lindsey D B. Head and brain potentials of human fetuses in utero. Am J Psychol. 1942; 55 412-418
- 30 Lipitz S, Yagel S, Malinger G, Meizner I, Zalel Y, Achiron R. Outcome of fetuses with isolated borderline unilateral ventriculomegaly diagnosed at mid-gestation. Ultrasound in Obstet Gynecol. 1998; 12 23-26
- 31 Majnemer A, Rosenblatt B. Evoked-potentials as predictors of outcome in neonatal intensive-care unit survivors: review of the literature. Pediatric Neurology. 1996; 14 189-195
- 32 McSherry J W, Walters C L, Horbar J D. Acute visual evoked potential changes in hydrocephalus. Electroencephalog Clin Neurophysiol. 1982; 52 331-333
- 33 Moore R J, Vadeyar S, Fulford J, Tyler D J, Gribben C, Baker P N, James D, Gowland P A. Antenatal determination of fetal brain acuvity in response to an acoustic stimulus using functional magnetic resonance imaging. Human Brain Mapping. 2001; 12 94-99
- 34 Placzek M, Mushin J, Dubowitz L MS. Maturation of the visual evoked response and its correlation with visual acuity in neurologically normal and abnormal preterm infants. Dev Med Child Neurol. 1985; 27 448
- 35 Preißl H, Eswaran H, Murphy P, Wilson J D, Robinson S E, Vrba J, Fife A A, Tilotson M, Lowery C L. Recording of temporal-spatial biomagnetic signals over the whole maternal abdomen with SARA - auditory fetal brain responses. Biomedizinische Technik. 2001; 46 (Suppl. II) 191-193
- 36 Querleu D, Boutteville C, Renard X, Grepin G. Sound stimulation test and fetal well-being. Am J Obstet Gynecol. 1985; 151 829-830
- 37 Resta M. Magnetic resonance imaging of normal and pathologic fetal brain. Child Nerv Syst. 1998; 14 151-154
-
38 Richardson S A, Koller H.
Mental retardation. Pless IB The Epidemiology of Childhood Disorders. New York; Oxford University Press 1994: 277-230 - 39 Rosen K G, Luzietti R. Intrapartum fetal monitoring: its basis and current developments. Prenatal and Neonatal Medicine. 2000; 5 155-168
- 40 Rosen M G, Scibetta J J. The human fetal electroencephalogram. I. An electrode for continuous recording during labor. Am J Obstet Gynecol. 1969; 104 1057-1060
- 41 Schmidt W, Boos R, Gnirs L. Fetal behavioral states and controlled sound stimulation. Early Human Dev. 1985; 12 145-153
- 42 Serafini P, Lindsay M BJ, Nagey D A, Pupkin M J, Tseng P, Crenshaw C. Antepartum fetal heart rate response to sound stimulation: The acoustic stimulation test. Am J Obstet Gynecol. 1984; 148 41
- 43 Sherer D M, Onyeije C I. Prenatal ultrasonographic diagnosis of fetal intracranial tumors: A review. Am J Perinat. 1998; 15 319-328
- 44 Sjostrom A, Uvebrant P, Roos A. The light flash evoked potential as a possible indicator of increased intracranial pressure in hydrocephalus. Childs Nervous System. 1995; 11 381-387
- 45 Sklar F H, Ehle A L, Clark W K. Visual evoked potentials: a noninvasive technique to monitor patients with shunted hydrocephalus. Neurosurgery. 1979; 4 529-534
- 46 Smith C V, Phelan J P, Paul R H, Broussard P. Fetal acoustical stimulation testing. A reproductive experience with the fetal acoustic stimulation test. Am J Obstet Gynecol. 1985; 153 567-569
- 47 Smith C V, Phelan J P, Platt L D, Broussard P, Paul R H. Fetal acoustic stimulation testing II. A randomized clinical comparison with the nonstress test. Am J Obstet Gynecol. 1986; 155 131-134
- 48 Sonigo P C, Rypens F F, Carteret M, Delezoide A L, Brunelle F O. MR imaging of fetal cerebral anomalies. Pediatr Radiol. 1998; 28 212-222
- 49 Stewart A L, Rifkin L, Amess P N, Kirkbride V, Townsend J P, Miller D H, Lewis S W, Kingsley D PE, Moseley I F, Foster O, Murray R M. Brain structure and neurocognitive and behavioural function in adolescents who were born very preterm. Lancet. 1999; 353 1653-1657
- 50 Taylor M J, Murphy W J, Whyte H E. Prognostic reliability of somatosensory and visual evoked potentials of asphyxiated term infants. Dev Med Child Neurol. 1992; 34 507-515
- 51 Tharp B, Cukier F, Monod N. The prognostic value of the electroencephalogram in premature infants. Electroencephalogr Clin Neurophysiol. 1981; 51 219-236
- 52 Uhlen I, Borg E, Persson H, Spehns K E. Topography of auditory evoked long-latency potentials in severe language impairements: the N1 componet. Electroencephal Clin Neurophysiol. 1996; 32 210-222
- 53 Vergani P, Ghidini A, Strobelt N, Locatelli A, Mariani S, Bertalero C. Prognostic indicators in the prenatal diagnosis of agenesis of corpus callosum. Am J Obstet Gynecol. 1994; 170 753-758
- 54 Whyte H. Visual evoked potentials in neonates following asphyxia. Clin Perinatol. 1993; 20 451-461
- 55 Whyte H E, Pearce J M, Taylor M J. Changes in the VEP in preterm neonates with arousal states, as assessed by EEG monitoring. Electroencephalogr Clin Neurophysiol. 1987; 68 223-225
- 56 Yoon B H, Jun J K, Romero R, Park K H, Gomez R, Choi J H. et al . Amniotic fluid inflammatory cytokines (interleukin-6, interleukin-1β, and tumor necrosis factor-α), neonatal brain white matter lesions, and cerebral palsy. Am J Obstet Gynecol. 1997; 177 19-26
- 57 Zubick H H, Fried M P, Feudo P, Epstein M F, Strome M. Normal neonatal brainstem auditory evoked potentials. Ann Otol Rhinol Laryngol. 1982; 91 485-488
Dr. Burkhard Schauf
Frauenklinik Tübingen
Schleichstr. 4
72076 Tübingen
Email: burkhard.schauf@med.uni-tuebingen.de