References
1a
Ziegler K.
Gellert HG.
Liebigs Ann. Chem.
1950,
567:
195
1b
Morton M.
Anionic Polymerisation: Principles and Practice
Academic Press;
New York:
1963.
2 Review: Marek I.
J. Chem. Soc., Perkin Trans 1
1999,
535
3 Review on early work: Klumpp GW.
Recl. Trev. Chim. Pay-Bas
1986,
105:
1
4a
Klein S.
Marek I.
Normant J.-F.
J. Org. Chem.
1994,
59:
2925
4b
Mück-Lichtenfeld C.
Ahlbrecht H.
Tetrahedron
1996,
52:
10025
5 Review: Beak P.
Meyers AI.
Acc. Chem. Res.
1986,
19:
356
6 The sense of diastereoselectivity, by which F is formed, depends on the configuration of intermediate E and the stereochemistry of the substitution step.
7a
Klein S.
Marek I.
Poisson J.-F.
Normant JF.
J. Am. Chem. Soc.
1995,
117:
8853
7b
Norsikian S.
Marek I.
Poisson JF.
Normant JF.
J. Org. Chem.
1997,
62:
4898
7c
Norsikian S.
Marek I.
Normant J.-F.
Tetrahedron Lett.
1997,
38:
7523
7d
Norsikian S.
Marek I.
Poisson JF.
Normant JF.
Chem.- Eur. J.
1999,
5:
2055
For further enantioselective, intramolecular reactions of achiral lithium alkenyl compounds, being complexed at the cation by (-)-sparteine, see:
8a
Bailey WF.
Mearly MJ.
J. Am. Chem. Soc.
2000,
122:
6787
8b
Sanz Gil G.
Groth UM.
J. Am. Chem. Soc.
2000,
122:
6789
9 Racemates: Hoppe D.
Brönneke A.
Synthesis
1982,
1045
For preparation of chiral benzyl lithium compounds by deprotonation of optically active precursors, see:
10a
Hoppe D.
Carstens A.
Krämer T.
Angew. Chem. Int. Ed. Engl.
1990,
29:
1424
10b
Carstens A.
Hoppe D.
Tetrahedron
1994,
30:
6097
10c
Derwing C.
Hoppe D.
Synthesis
1996,
149
10d
Derwing C.
Frank H.
Hoppe D.
Eur. J. Org. Chem.
1999,
3519
10e
Hammerschmidt F.
Hanninger A.
Peric Simov B.
Völlenkle H.
Werner A.
Eur. J. Org. Chem.
1999,
3511
For further configurationally stable benzyllithiums:
11a
Hoppe D.
Kaiser B.
Stratmann O.
Fröhlich R.
Angew. Chem. Int. Ed. Engl.
1997,
36:
2784
11b
Stratmann O.
Kaiser B.
Fröhlich R.
Meyer O.
Hoppe D.
Eur. J. Org. Chem.
2001,
423
Reviews:
12a
Hoppe D.
Hense T.
Angew. Chem. Int. Ed. Engl.
1997,
36:
2282
12b
Beak P.
Basu A.
Gallagher DJ.
Park YS.
Thayumanavan S.
Acc. Chem. Res.
1996,
29:
552
13
Superchi S.
Sotomayor N.
Miao G.
Joseph B.
Campbell MG.
Snieckus V.
Tetrahedron Lett.
1996,
37:
6061
14 High simple diastereoselectivity may result from the syn-addition process.
15
Hoppe D.
Hanko R.
Brönneke A.
Lichtenberg F.
van Hülsen E.
Chem. Ber.
1985,
118:
2822
16
Heinl T.
Retzow S.
Hoppe D.
Fraenkel G.
Chem.- Eur. J.
1999,
5:
3464
17 X-ray crystal structure analysis of 1d: formula C21H25NO2, M = 323.42, colourless crystal 0.40 × 0.40 × 0.20 mm, a = 12.118(2), b = 13.509(2), c = 23.090(4) Å, β = 92.32(1)°, V = 3776.8(11) Å3, ρcalc = 1.138 g cm-3, µ = 0.72 cm-1, no absorption correction (0.994 ≤ C ≤ 0.999), Z = 8, monoclinic, space group P21/c (No. 14), λ = 0.71073 Å, T = 293 K, ω/2θ scans, 6700 reflections collected (+h,+k, ±l), [(sinθ)/λ] = 0.59 Å-1, 6374 independent (R
int = 0.028) and 3227 observed reflections [I ≥ 2 σ(I)], 441 refined parameters, R = 0.048, wR
2 = 0.114, max. residual electron density 0.45 (-0.23) e Å-3, hydrogens calculated and refined as riding atoms, two almost identical molecules in the asymmetric unit, differences in the torsion angles C1-C2-O2-C3 and C31-C32-O32-C33.
[36]
18 If not denoted otherwise in Tables: the first letter corresponds to the substrate and the second letter corresponds to the carbolithiation reagent.
19 X-ray crystal structure analysis of 9a: formula C25H35NO2, M = 381.54, colourless crystal 0.70 × 0.50 × 0.30 mm, a = 29.416(5), c = 11.006(2) Å, V = 9524(3) Å3, ρcalc = 1.064 g cm-3, µ = 0.66 cm-1, empirical absorption correction via ψ scan data (0.928 ≤ C ≤ 0.999), Z = 16, tetragonal, space group I41/a (No. 88), λ = 0.71073 Å, T = 293 K, ω/2θ scans, 8176 reflections collected (+h, ±k,+l), [(sinθ)/λ] = 0.59 Å-1, 4011 independent (R
int = 0.099) and 1859 observed reflections [I ≥ 2 σ(I)], 258 refined parameters, R = 0.062, wR
2 = 0.161, max. residual electron density 0.18 (-0.17) e Å-3, hydrogens calculated and refined as riding atoms.
[36]
20 See Ref. For a further example: Laqua H.
Fröhlich R.
Wibbeling B.
Hoppe D.
J. Organomet. Chem.
2001,
624:
96
21 X-ray crystal structure analysis of 17: formula C23H35NO4, M = 389.52, colourless crystal 0.30 × 0.25 × 0.15 mm, a = 10.689(1), b = 10.717(1), c = 10.953(1) Å, α = 101.53(1), β = 96.47(1), γ = 108.18(1)°, V = 1147.2(2) Å3, ρcalc = 1.128 g cm-3, µ = 0.76 cm-1, no absorption correction (0.978 ≤ T ≤ 0.989), Z = 2, triclinic, space group P1bar (No. 2), λ = 0.71073 Å, T = 293 K, ω and φ scans, 8217 reflections collected (±h, ±k, ±l), [(sinθ)/λ] = 0.65 Å-1, 5220 independent (R
int = 0.020) and 4004 observed reflections [I ≥ 2 σ(I)], 261 refined parameters, R = 0.052, wR
2 = 0.138, max. residual electron density 0.17 (-0.16) e Å-3, hydrogens calculated and refined as riding atoms.
[36]
22
Tolbert LM.
Martone DP.
J. Org. Chem.
1983,
38:
1185
23a
Wittig G.
Bub O.
Liebigs Ann. Chem.
1950,
566:
113
23b
Wittig G.
Gonsior L.
Vogel H.
Liebigs Ann. Chem.
1965,
688:
1
24
Fraenkel G.
Geckle MJ.
Kaylo A.
Estes DW.
J. Organomet. Chem.
1980,
197:
249
25 Iodide 18 was prepared from 1-phenylprop-2-enol by carbamoylation, a deprotonation-γ-alkylation sequence with a ω-oxy-2-(tetrahydropyranyloxy)propyl iodide, deprotection of the hydroxy group and conversion to the iodide; see experimental section.
26a
Winkler HJS.
Winkler H.
J. Am. Chem. Soc.
1966,
88:
964
26b
Winkler HJS.
Winkler H.
J. Am. Chem. Soc.
1966,
88:
969
26c
Bailey WF.
Patricia JJ.
Del Gobbo VC.
Jarret RM.
Okarma PJ.
J. Org. Chem.
1985,
50:
1999
26d
Bailey WF.
Nurmi TT.
Patricia JJ.
Wang W.
J. Am. Chem. Soc.
1987,
109:
2442
26e
Bailey WF.
Khanolkar AD.
Gavaskar K.
Ovaska TV.
Rossi K.
Thiel Y.
Wiberg KB.
J. Am. Chem. Soc.
1991,
113:
5720
27 See also footnote 15 in Ref.
[13]
Pentyl phenyl ketone was submitted to an asymmetric reduction by (+)-diisopinocampheylchloroborane and the resulting alcohol was subsequently carbamoylated by N,N-diisopropylcarbamoyl chloride (4) in pyridine:
28a
Brown HC.
Chandrasekharan J.
Ramachandran PV.
J. Am. Chem. Soc.
1988,
110:
1539
28b See Ref.
[15]
29
Galinousky F.
Knoth P.
Fischer W.
Monatsh. Chem.
1955,
86:
1014
30
Behrens K.
Dissertation
University of Münster;
Germany:
1997.
31a
Benson SC.
Cai P.
Colon M.
Haiza MA.
Tokles M.
Snyder JK.
J. Org. Chem.
1988,
53:
5335
31b
Würthwein E.-U.
Behrens K.
Hoppe D.
Chem.- Eur. J.
1999,
5:
3459
32
Beak P.
Kerrick ST.
Wu S.
Chu J.
J. Am. Chem. Soc.
1999,
116:
3231
33
Peters JG.
Dissertation
University of Münster;
Germany:
2000.
34
Ramsden HE.
Leebrick JR.
Rosenberg SD.
Miller EH.
Walburn JJ.
Balint AE.
J. Org. Chem.
1957,
22:
1602
35
Cox GG.
Moody CJ.
Austin DJ.
Padwa A.
Tetrahedron
1993,
49:
5109
36a X-ray analysis
36b X-ray data sets were collected with Enraf-Nonius CAD4 and Nonius Kappa CCD diffractometers, the later one equipped with a rotating anode generator Nonius FR591. Programs used: data collection EXPRESS (Nonius B.V., 1994) and COLLECT (Nonius B.V., 1998), data reduction MolEN (K. Fair, Enraf-Nonius B.V., 1990) and Denzo-SMN: Otwinowski Z.
Minor W.
Methods in Enzymology
1997,
276:
307
36c Absorption correction for CCD data SORTAV: Blessing RH.
Acta Crystallogr.
1995,
A51:
33
36d
Blessing RH.
J. Appl. Crystallogr.
1997,
30:
421
36e Structure solution SHELXS-86 and SHELXS-97: Sheldrick GM.
Acta Crystallogr.
1990,
A46:
467
36f
Sheldrick GM.
Structure refinement SHELXL-93 and SHELXL-97
Universität Göttingen;
Germany:
1997.
36g Graphics: Keller E.
SCHAKAL
Universität Freiburg;
Germany:
1997.
36h Crystallographic data (excluding structure factors) for the structure reported in this paper have been deposited with Cambridge Crystallographic Data Centre as supplementary publication No. CCDC-156957-156959. Copies of the data can be obtained free of charge on application to The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: int. code+44(1223)336-033; e-mail: deposit@ccdc.cam.ac.uk).