Int J Sports Med 2002; 23(2): 77-81
DOI: 10.1055/s-2002-20128
Physiology and Biochemistry
© Georg Thieme Verlag Stuttgart · New York

Maintenance of Bone Mass and Mechanical Properties after Short-Term Cessation of High Impact Exercise in Rats

R.  Singh1, 2 , Y.  Umemura1 , A.  Honda1 , S.  Nagasawa1
  • 1 Laboratory for Exercise Physiology and Biomechanics, School of Health and Sports Science, Chukyo University, Toyota, Japan
  • 2 Sports Science Unit, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
Further Information

Publication History

May 31, 2001

Publication Date:
13 February 2002 (online)

Abstract

The effects of cessation of high-impact exercise on bone mass in female Wistar rats was assessed. Fifty 10-week old rats were randomly divided into five groups (n = 10): 4 weeks jump-exercise (4JEX), 4 weeks sedentary control (4S), 8 weeks jump-exercise (8JEX), 4 weeks jump-exercise followed by 4 weeks sedentary (4JEX4S) and 8 weeks sedentary control (8S). The rats were jumped trained 40 times/session, 5 days/week. After 4 weeks or 8 weeks the mass and breaking force in tibia and cross-sectional areas of the tibia were measured. The tibia in the 4JEX and 8JEX groups had significantly greater fat-free dry weight and maximum loads at the fracture tests than those in the 4S and 8S groups. The tibia of 4JEX and 8JEX also had significantly larger cortical area without a significant change in the medullary area at the cross-sectional analysis. Bone mass acquired in 4JEX4S group was retained after cessation of exercise. The results indicate that high-impact jump-exercise, which is osteotropic, leads to an increased cortical bone with enhanced periosteal bone formation, which is also, however, maintained after cessation of exercise. It is therefore suggested that high-impact jump-exercise may provide greater safety margin against disuse-related or/and age-related bone loss and skeletal fragility later in life.

References

  • 1 Bassey E J, Ramsdale S J. Increase in femoral bone density in young women following high-impact exercise.  Osteoporos Int. 1994;  4 72-75
  • 2 Berard A, Bravo G, Gauthier P. Meta-analysis of the effectiveness of physical activity for the prevention of bone loss in postmenopausal women.  Osteoporos Int. 1997;  7 331-337
  • 3 Biewener A A, Bertram J EA. Structural response of growing bone to exercise and disuse.  J Appl Physiol. 1994;  76 946-955
  • 4 Burr D B, Martin R B. Errors in bone remodeling: Toward a unified theory of metabolic bone disease.  Am J Anat. 1989;  186 186-216
  • 5 Cassell C, Benedict M, Specker B. Bone mineral density in elite 7- to 9-yr-old female gymnasts and swimmers.  Med Sci Sports Exerc. 1996;  28 1243-1246
  • 6 Cavolina J M, Evans G L, Harris S A, Zhang M, Westerlind K C, Turner R T. The effects of orbital spaceflight on bone histomorphometry and messenger ribonucleic acid levels for bone matrix proteins and skeletal signaling peptides in ovariectomized growing rats.  Endocrinol. 1997;  138 1567-1576
  • 7 Chen M M, Jee W SS, Ke H Z, Lim B Y, Li Q N, Li X J. Adaptation of cancellous bone to aging and immobilization in growing rats.  Anat Rec. 1992;  234 317-334
  • 8 Courteix D, Lespessailles E, Peres S L, Obert P, Germain P, Benhamou C L. Effect of physical activity on bone mineral density in prepubertal girls: a comparative study between impact-loading and non-impact-loading sports.  Osteoporos Int. 1998;  8 152-158
  • 9 Dalen N, Olsson K E. Bone mineral content and physical activity.  Acta Orthop Scand. 1974;  45 170-174
  • 10 Dalsky G P, Stocke K S, Ehsani A A, Slatopolsky E, Lee W C, Birge J S. Weight-bearing exercise training and lumbar bone mineral content in postmenopausal women.  Ann Intern Med. 1988;  108 824-828
  • 11 Donaldson C L, Hulley S B, Vogel J M, Hattner R S, Bayers J H, McMillan D E. Effect of prolonged bed rest on bone mineral.  Metabolism. 1970;  19 1071-1084
  • 12 Forwood M R, Burr D B. Physical activity and bone mass: Exercises in futility?.  Bone Miner. 1993;  21 89-112
  • 13 Globus R K, Bikle D D, Morey-Holton E R. The temporal response of bone to unloading.  Endocrinol. 1986;  118 733-742
  • 14 Grimston S K, Willows N D, Hanley D A. Mechanical loading regime and its relationship to bone mineral density in children.  Med Sci Sports Exerc. 1993;  25 1203-1210
  • 15 Heinonen A, Kannus P, Sievanen H, Oja P, Pasanen M, Rinne M, Uusi-rasi K, Vuori I. Randomised controlled trial of effect of high-impact exercise on selected risk factors for osteoporotic fractures.  Lancet. 1996;  348 1343-1347
  • 16 Heinonen A, Kannus P, Sievanen H, Pasanen M, Oja P, Vouri I. Good maintenance of high-impact activity-induced bone gain by voluntary, unsupervised exercises: an 8-month follow-up of a randomized controlled trial.  J Bone Miner Res. 1999;  14 125-128
  • 17 Heinonen A, Oja O, Kannus P, Sievanen H, Haapasalo H, Manttari A, Vouri I. Bone mineral density in female athletes representing sports with different loading characteristics of the skeleton.  Bone. 1995;  17 197-203
  • 18 Horcajada-Molteni M N, Davicco M J, Collignon H, Lebecque P, Coxam V, Barlet J P. Does endurance running before orchidectomy prevent osteopenia in rats?.  Eur J Appl Physiol. 1999;  80 344-352
  • 19 Jouanny P, Guillemin F, Kuntz C, Jaendel C, Pourel J. Environmental and genetic factors affecting bone mass.  Arthritis Rheum. 1995;  38 61-67
  • 20 Judex S, Zernicke R F. High-impact exercise and growing bone: relation between high strain rates and enhanced bone formation.  J Appl Physiol. 2000;  88 2183-2191
  • 21 Karlsson M K, Johnell O, Obrant K J. Is bone mineral density advantage maintained long-term in previous weight lifters?.  Calcif Tissue Int. 1995;  57 325-328
  • 22 Kodama Y, Umemura Y, Nagasawa S, Beamer W G, Donahue L R, Rosen C R, Baylink D J, Farley J R. Exercise and mechanical loading increase periosteal bone formation and whole bone strength in C57BL/6J but not in C3H/Hej mice.  Calcif Tissue Int. 2000;  66 298-306
  • 23 Kiuchi A, Arai Y, Katsuta S. Detraining effects on bone mass in young male rats.  Int J Sports Med. 1998;  19 245-249
  • 24 Lanyon L E, Rubin C T. Static vs dynamic loads as an influence on bone modelling.  J Biomech. 1984;  17 897-905
  • 25 Layne J E, Nelson N E. The effect of progressive resistance training on bone density: A review.  Med Sci Sports Exerc. 1999;  31 25-30
  • 26 LeBlanc A D, Evans H J, Johnson P C, Ihingran S. Changes in total body calcium balance with exercise in the rat.  J Appl Physiol. 1983;  55 201-204
  • 27 Mosley J R, March B M, Lynch J, Lanyon L E. Strain magnitude related changes in whole bone architecture in growing rats.  Bone. 1997;  20 191-198
  • 28 Nguyen T V, Blangero J, Eisman J A. Genetic epidemiological approaches to the search for osteoporosis genes.  J Bone Miner Res. 2000;  15 392-401
  • 29 Nichols D L, Sanborn C F, Bonnick S L, Ben-ezra V, Gench B, DiMarco N M. The effects of gymnastic training on bone mineral density.  Med Sci Sports Exerc. 1994;  26 1220-1225
  • 30 Nordstrom P, Petterson U, Iorentzon R. Type of physical activity, muscle strength, and pubertal stage as determinants of bone mineral density and bone area in adolescent boys.  J Bone Miner Res. 1998;  13 1141-1148
  • 31 Raab D M, Smith E L, Crenshaw T D, Thomas D P. Bone mechanical properties after exercise training in young and old rats.  J Appl Physiol. 1990;  68 130-134
  • 32 Riggs B, Melton L J. The prevention and treatment of osteoporosis.  N Eng J Med. 1992;  327 620-627
  • 33 Rubin C T, Lanyon L E. Regulation of bone mass by mechanical strain magnitude.  Calcif Tissue Int. 1985;  37 411-417
  • 34 Rutherford O M. Is there a role of exercise in the prevention of osteoporotic fractures?.  Br J Sports Med. 1999;  33 378-386
  • 35 Shaw S R, Zernicke R F, Vailas A C, DeLuna D, Thomason D B, Balwin K M. Mechanical, morphological and biochemical adaptations of bone and muscle to hindlimb suspension and exercise.  J Biomech. 1987;  20 225-234
  • 36 Shen V, Liang X G, Birchman R, Wu D D, Healy D, Lindsay R, Dempster D W. Short term immobilization-induced cancellous bone loss is limited to region undergoing high turnover and/or modeling in mature rats.  Bone. 1997;  21 71-78
  • 37 Shimegi S, Katsuta S, Amagai H, Ohno A. Exercise-induced bone hypertrophy in growing rats.  Jpn J Phys Fitness Sports Med. 1990;  39 181-188
  • 38 Snow-Harter C, Marcus R. Exercise, bone mineral density and osteoporosis.  Exer Sports Sci Rev. 1991;  19 351-388
  • 39 Taaffe D R, Robinson T L, Snow C M, Marcus R. High-impact exercise promotes bone gain in well-trained female athletes.  J Bone Miner Res. 1997;  12 255-260
  • 40 Turner R T, Bell N H. The effects of immobilization on bone histomorphometry in rats.  J Bone Miner Res. 1986;  1 399-407
  • 41 Umemura Y, Ishiko T, Tsujimoto H, Miura H, Mokushi N, Suzuki H. Effects of jump training on bone hypertrophy in young and old rats.  Int J Sports Med. 1995;  16 364-367
  • 42 Umemura Y, Ishiko T, Yamauchi T, Kurono M, Mashiko S. Five jumps per day increase bone mass and breaking force in rats.  J Bone Miner Res. 1997;  12 1480-1485
  • 43 Vuori I, Heinonen A, Sievanen H, Kannus P, Pasanen M, Oja P. Effects of unilateral strength training and detraining on bone mineral density and content in young women: A study of mechanical loading and deloading on human bones.  Calcif Tissue Int. 1994;  55 59-67
  • 44 Wronski T J, Morey E R. Effect of spaceflight on periosteal bone formation in rats.  Am J Physiol. 1983;  244 R305-R309
  • 45 Yeh J K, Aloia J F. Deconditioning increases bone resorption and decreases bone formation in the rat.  Metabolism. 1990;  39 659-663
  • 46 Yeh J K, Liu C C, Aloia J F. Effects of exercise and immobilization on bone formation and resorption in young rats.  Am J Physiol. 1993;  264 E182-E189

R. Singh

Sports Science Unit, School of Medical Sciences · Universiti Sains Malaysia

16150 Kelantan·Malaysia

Phone: +(609) 765 1700

Fax: +(609) 765 3370

Email: rabindar@kck.usm.my