Klin Monbl Augenheilkd 2002; 219(9): 631-643
DOI: 10.1055/s-2002-35164
Übersicht
© Georg Thieme Verlag Stuttgart · New York

Bedeutung oxidativer Mechanismen bei Erkrankungen der Netzhaut

The Significance of Oxidative Mechanisms in Diseases of the RetinaAlbert  J.  Augustin1 , H.  Burkhard  Dick2 , Indre  Offermann1 , Ursula  Schmidt-Erfurth3
  • 1Augenklinik, Klinikum Karlsruhe
  • 2Universitäts-Augenklinik Mainz
  • 3Universitäts-Augenklinik Lübeck
Further Information

Publication History

Eingegangen: 4. Juli 2002

Angenommen: 15. Juli 2002

Publication Date:
30 October 2002 (online)

Zusammenfassung

Das Auge ist im Vergleich zu anderen Organen vermehrt gefährdet, oxidative Schäden zu erleiden. Ursache hierfür ist u. a. die lebenslange Lichteinwirkung. Die Strukturen des vorderen Augenabschnittes sind v. a. einer UV-Einwirkung ausgesetzt, während bei der Netzhaut der blaue Anteil des sichtbaren Spektrums eine wichtige Rolle spielen soll. Die biochemische Zusammensetzung der okulären Strukturen ist ein weiterer Faktor, der diese im Vergleich zu anderen Organen vermehrte oxidative Gefährdung ausmacht. Bei ischämischen Netzhauterkrankungen spielen die von anderen Organen bekannten Mechanismen wie z. B. die Xanthinoxidasereaktion die Hauptrolle. Ischämische Prozesse gelten bei der diabetischen Retinopathie im Hinblick auf die Generierung oxidativer Metaboliten mittlerweile eher als Sekundärreaktionen. Hier stehen heute Glykosylierungsprodukte (AGEs) und die auch oxidativ induzierbare Expression von Wachstumsfaktoren im Mittelpunkt. Bei der altersbedingten Makuladegeneration scheinen photodynamische Prozesse (v. a. Typ-2-Reaktion), die von Kindheit an ablaufen und auch durch sichtbares, v. a. blaues Licht, unterhalten werden, mitverantwortlich für die Entstehung des Krankheitsbildes zu sein. Zusätzlich kann die Induktion des Gefäßwachstums bzw. die Expression von Wachstumsfaktoren über Entzündungsreaktionen, aber auch oxidativ erfolgen. Ziel dieser Übersichtsarbeit ist es, einen Überblick über verschiedene bei Netzhauterkrankungen beteiligte oxidative Mechanismen zu geben und mögliche Therapie- und Präventionsansätze aufzuzeigen. Diese Ansätze, wie z. B. die Ergebnisse der ARED-Studie, werden auch unter Berücksichtigung des Nebenwirkungsprofils diskutiert.

Abstract

The eye is at high risk to be damaged by oxidative mechanisms. One major reason is the exposure to light throughout life. Anterior segment structures are mostly exposed to UV light. Visible blue light is believed to be a significant damaging mechanism for the retina. The biochemical composition of the posterior segment structures (unsaturated fatty acids) is an important factor making the eye more susceptible than other organs. Damaging mechanisms such as xanthin oxidase mechanisms are responsible for damage occurring in ischaemic diseases. These mechanisms are well known from diseases of other organs. Ischaemic processes are no longer believed to be the primary damaging mechanisms in diabetic retinopathy. Here, advanced glycation end products (AGE's) and related products may induce oxidative reactions and the expression of growth factors. In age-related macular degeneration photodynamic processes occurring already in childhood are believed to be a major factor contributing to the pathogenesis of the disease process. In addition, the expression of growth factors and new vessel growth can be initiated via inflammatory reactions or oxidative metabolites. In this manuscript we give an overview on oxidative mechanisms involved in the pathogenesis of retinal diseases. Different therapeutical and preventive approaches such as the results of the ARED-Study and possible side effects are discussed.

Literatur

  • 1 Adamis A P, Miller J W, Bernal M T, D'Amico D J, Folkman J, Yeo T K, Yeo K T. Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy.  Am J Ophthalmol. 1994;  118 445-450
  • 2 Adamis A P, Shima D T, Tolentino M J, Gragoudas E S, Ferrara N, Folkman J, D'Amore P A, Miller J W. Inhibition of vascular endothelial growth factor prevents retinal ischemia-associated iris neovascularization in a nonhuman primate.  Arch Ophthalmol. 1996;  114 66-71
  • 3 Age-Related Eye Disease Study Research Group . A randomized, placebo-controlled clinical trial of high dose supplementation with vitamins C and E, beta carotene, and zink for age-related macular degeneration and vision loss. AREDS report No. 8.  Arch Ophthalmol. 2001;  119 1417-1436
  • 4 Aiello L P, Avery R L, Arrigg P G, Keyt B A, Jampel H D, Shah S T, Pasquale L R, Thieme H, Iwamoto M A, Park J E, Nguyen H V, Aiello L M, Ferrara N, King G L. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal diseases.  N Engl J Med. 1994;  331 1480-1487
  • 5 Aiello A P, Pierce A C, Foley E D. Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins.  Proc Natl Acad Sci USA. 1995;  92 10457-10461
  • 6 Aiello L P, Northrup J M, Keyt B A, Takagi H, Iwamoto M A. Hypoxia regulation of vascular endothelial growth factor in retinal cells.  Arch Ophthalmol. 1995;  113 1538-1544
  • 7 Andley U P, Clark B A. Generation of oxidants in the near-UV photooxidation of human lens alpha-crystallin.  Invest Ophth Vis Sci. 1989;  30 706-713
  • 8 Armstrong D, Hiramitsu T, Gutteridge J, Nilsson S E. Studies on experimentally induced retinal degeneration. Effect of lipid peroxides on electroretinographic activity in the albino rabbit.  Exp Eye Res. 1982;  35 157-171
  • 9 Armstrong D, Santangelo G, Connole E. The distribution of peroxide regulating enzymes in the canine eye.  Curr Eye Res. 1982;  1 225-242
  • 10 Armstrong D, Augustin A J, Spengler R, Al-Jada A, Nickola T, Grus F. Detection of vascular endothelial growth factor (VEGF) and tumor necrosis factor alpha (TNF-α) in epiretinal membranes of proliferative diabetic retinopathy, proliferative vitreoretinopathy and macular pucker.  Ophthalmologica. 1998;  212 410-414
  • 11 Atalla L R, Sevanian A, Rao N A. Immunohistochemical localization of glutathione peroxidase in ocular tissue.  Curr Eye Res. 1988;  7 1023-1027
  • 12 Augustin A J, Lutz J. Intestinal, hepatic and renal production of thiobarbituric acid reactive substances and myeloperoxidase activity after temporary aortic occlusion and reperfusion.  Life Sci. 1992;  49 961-968
  • 13 Augustin A J, Spitznas M, Koch F, Grus F, Lutz J. Effects of artificial blood substitutes and vitamin E on ischemia induced retinal oxidative tissue damage.  Exp Eye Res. 1998;  66 19-24
  • 14 Ayala M N, Michael R, Söderberg P G. In vivo cataract after repeated exposure to ultraviolet radiation.  Exp Eye Res. 2000;  70 451-456
  • 15 Batey D W, Daneshgar K K, Eckhert C D. Flavin levels in the rat retina.  Exp Eye Res. 1992;  54 605-609
  • 16 Baynes J W. Role of oxidative stress in development of complications in diabetes.  Diabetes. 1991;  40 405-412
  • 17 Beatty S, Murray I J, Henson D B, Carden D, Koh H-H, Boulton M E. Macular pigment and risk for age-related macular degeneration in subjects from a Northern European population.  Invest Ophthalmol Vis Sci. 2001;  42 439-446
  • 18 Ben-Shabat S, Itagaki Y, Jockusch S, Sparrow J R, Turro N J, Nakanishi K. Formation of Nonaoxirane from A2E, a lipofuscin fluorophore related to macular degeneration, and evidence of singlet oxygen involvement.  Angew Chemie. 2002;  114 842-844
  • 19 Berendschot T TJM, Goldbohm R A, Klöpping W AA, van de Kraats J, van Norel J, van Norren D. Influence of lutein supplementation on macular pigment, assessed with two objective techniques.  Invest Ophthalmol Vis Sci. 2000;  41 3322-3326
  • 20 Bernstein P S, Khachik F, Carvalho L S, Muir G J, Zhao A Y, Katz N B. Identification and quantitation of caroteinoids and their metabolites in the tissues of the human eye.  Exp Eye Res. 2001;  72 215-223
  • 21 Bhuyan K C, Bhuyan D K. Molecular mechanism of cataractogenesis III: Toxic metabolites of oxygen as initiators of lipid peroxidation and cataract.  Curr Eye Res. 1984;  3 67-81
  • 22 Boulton M, Rozanowska M, Rozanowski B. Retinal photodamage.  J Photochem Photobiol. 2001;  64 144-161
  • 23 Brauchle M, Funk J O, Kind P, Werner S. Ultraviolet B and H2O2 are potent inducers of vascular endothelial growth factor expression in cultured keratinocytes.  J Biol Chem. 1996;  271 21793-21797
  • 24 Braun R D, Linsenmeier R A, Goldstick T K. New perfluorocarbon emulsion improves tisssue oxygenation in cat retina.  J Appl Physiol. 1992;  72 1960-1968
  • 25 Brownlee M, Leramie A. The biochemistry of the complications of diabetes mellitus.  Ann Rev Biochem. 1981;  50 385-432
  • 26 Brownlee M, Ceramie A, Vlassara H. Advanced glycosylation endproducts in tissue and the biochemical basis of diabetic complications.  N Engl J Med. 1988;  318 1315-1321
  • 27 Ceriello A, Gugliano D, Quatraro A, Donzella C, Dipalo G, Lefebvre P J. Vitamin E reduction of protein glycosylation in diabetes.  Diabetes Care. 1991;  14 68-72
  • 28 Crockett R S, Lawwill T. Oxygen dependence of damage by 435 nm light in cultured retinal epithelium.  Curr Eye Res. 1984;  3 209-222
  • 29 De La Paz M A, Anderson R E. Lipid peroxidation in rod outer segments.  Invest Ophth Vis Sci. 1992a;  33 2091-2096
  • 30 De La Paz M A, Anderson R E. Region and age-dependent variation in susceptibility of the human retina to lipid peroxidation.  Invest Ophth Vis Sci. 1992b;  33 3497-3499
  • 31 Dillon J. Photolytic changes in lens proteins.  Curr Eye Res. 1984;  3 145-157
  • 32 Dorey C K, Khouri G G, Syniuta L A, Curran S A, Weiter J J. Superoxide production by porcine retinal pigment epithelium in vitro.  Invest Ophth Vis Sci. 1989;  30 1047-1053
  • 33 Evans J R. Risk factors for age-related macular degeneration.  Progress Ret and Eye Res. 2001;  20 227-253
  • 34 Eye Disease Case-Control Study Group . Antioxidant status and neovascular age-related macular degeneration.  Arch Ophthalmol. 1993;  111 104-109
  • 35 FASEB Meeting Report .Anti-oxidants may reduce retinopathy risk for diabetes. Cataract & Refractive Surgery. Euro Times May-June, 1998: 29
  • 36 Flower R W, Snyder W J. Expanded hypothesis on the mechanism of photodynamic therapy action on choroidal neovascularization.  Retina. 1999;  19 365-369
  • 37 Gaillard E R, Atherton S J, Eldred G, Dillon J. Photophysical studies on human retinal lipofuscin.  Photochem Photobiol. 1995;  61 448-453
  • 38 Gaton D D, Gold J, Axer-Siegel R, Wielunsky E, Naor N, Nissenkorn I. Evaluation of bilirubin as possible protective factor in the prevention of retinopathy of prematurity.  Br J Ophthalmol. 1991;  75 532-534
  • 39 Glass P. Light and the developing retina.  Doc Ophthalmol. 1990;  74 195-203
  • 40 Gottsch J D, Bynoe L A, Harlan J B, Rencs E V, Green W R. Light-induced deposits in Bruch's Membrane of protoporphyric mice.  Arch Ophth. 1993;  111 126-129
  • 41 Granger D N, Rutili G, McCord J MC. Superoxide radicals in feline intestinal ischemia.  Gastroenterology. 1981;  81 22-29
  • 42 Granger D N, Parks D A. The role of oxygen-free radicals in the pathogenesis of intestinal ischemia.  Physiologist. 1983;  26 159-164
  • 43 Ham W T, Mueller H A, Ruffolo J J, Millen J E, Cleary S F, Guerry E K, Guerry D. Basic mechanisms underlying the production of photochemical lesions in the mammalian retina.  Curr Eye Res. 1984;  3 165-174
  • 44 Hammond B R, Wooten B R, Snodderly D M. Individual variations in the spatial profile of human macular pigment.  J Opt Soc Am. 1997a;  14 1187-1196
  • 45 Hammond B R, Wooten B R, Snodderly D M. Density of the human crystalline lens is related to the macular pigment carotenoids, lutein and zeaxanthin.  Optom Vis Sci. 1997b;  74 499-504
  • 46 Handa J T, Reiser K M, Matsunaga H, Hjelmeland L M. The advanced glycation endproduct pentosidine induces the expression of PDGF-B in human retinal pigment epithelial cells.  Exp Eye Res. 1998;  66 411-419
  • 47 Hayes K C. Retinal degeneration in monkeys induced by deficiencies of vitamin E or A.  Invest Ophth Vis Sci. 1974;  13 499-510
  • 48 Hearse D J, Manning A S, Downey J M, Yellon D M. Xanthin oxidase: a critical mediator of myocardial injury during ischemia and reperfusion.  Acta Physiol Scand. 1986;  548 65-78
  • 49 Hiramatsu K, Arimori S. Increased superoxide production by mononuclear cells of patients with hypertriglyceridemia and diabetes.  Diabetes. 1988;  37 832-837
  • 50 Hirata C, Nakano K, Nakamura N. Advanced glycation end products induce expression of vascular endothelial growth factor by retinal Muller cells.  Biochem Biophys Res Commun. 1997;  236 712-715
  • 51 IARC .IARC handbooks of cancer prevention: Vol. 2 carotenoids. Oxford; Oxford University Press 1998
  • 52 Jain S K. Hyperglycemia can cause membrane lipid peroxidation and osmotic fragility in human and red blood cells.  J Biol Chem. 1989;  264 21340-21345
  • 53 Jennings P E, Barnett A H. New approaches to the pathogenesis and treatment of diabetic microangiopathy.  Diabet Med. 1988;  5 111-117
  • 54 Junghans A, Sies H, Stahl W. Macular pigments lutein and zeaxanthin as blue light filters studied in liposomes.  Arch Biochem Biophys. 2001;  391 160-164
  • 55 Karpen C W, Pritchard K A, Arnold J H. Restoration of prostacyclin/thromboxane A balance in the diabetic rat. Influence of dietary vitamin E.  Diabetes. 1982;  31 947-951
  • 56 Karpen C W, Cataland S, D'Dorisio T M, Panganamala R V. Production of 12-HETE and vitamin E status in patients of type I human diabetic subjects.  Diabetes. 1985;  34 526-531
  • 57 Katz B. Migrainous central retinal artery occlusion.  J Clin Neuro-Ophthalmol. 1986;  6 69-78
  • 58 Kaul K, Lamm K W, Fong T, Lock C, Perry M, Treble D. Ascorbate peroxidase in bovine retinal pigment epithelium and choroid.  Curr Eye Res. 1988;  7 675-679
  • 59 Kim K J, Li B, Winer J, Armanini M, Gillett N, Phillips H S, Ferrara N. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo.  Nature. 1993;  362 841-844
  • 60 Kitahara L, Eyre H J, Lynch R, Rallison M L, Hill H R. Metabolic activity of diabetic monocytes.  Diabetes. 1980;  29 251-256
  • 61 van Kuijk F JGM, Buck P. Fatty acid composition of the human macula and peripheral retina.  Invest Ophth Vis Sci. 1992;  33 3493-3496
  • 62 Kuroki M, Voest E E, Amano S, Beerepoot L V, Takashima S, Tolentino M, Kim R Y, Rohan R M, Colby K A, Yeo K T, Adamis A P. Reactive oxygen intermediates increase vascular endothelial growth factor expression in vitro and in vivo.  J Clin Invest. 1996;  98 1667-1675
  • 63 Landrum J T, Bone R A, Kilburn M D. The macular pigment. A possible role in protection from age related macular degeneration.  Adv Pharmacol. 1997;  38 537-556
  • 64 Landrum J T, Bone R A. Lutein, zeaxanthin and macular pigment.  Arch Biochem Biophys. 2001;  385 28-40
  • 65 Liles M R, Newsome D A, Oliver P D. Antioxidant enzymes in the aging human retinal pigment epithelium.  Arch Ophthalmol. 1991;  109 1285-1288
  • 66 Lucchesi B R, Mullane K M. Leukocytes and ischemia-induced myocardial ischemia.  Ann Rev Pharmacol Toxicol. 1986;  26 210-224
  • 67 Lynch M A. Lipoic acid confers protection against oxidative injury in non-neural and neuronal tissue.  Nutritional Neuroscience. 2001;  4 419-438
  • 68 Lyons T J. Oxidised low density lipoproteins: a role in the pathogenesis of atherosclerosis in diabetes.  Diabet Med. 1991;  8 411-419
  • 69 Malecaze F, Clamens S, Simorre-Pinatel V, Mathis A, Chollet P, Favard C, Bayard F, Plouet J. Detection of vascular endothelial growth factor messenger RNA and vascular endothelial growth factor-like activity in proliferative diabetic retinopathy.  Arch Ophthalmol. 1994;  112 1476-1482
  • 70 Mayer-Davis E J, Bell R A, Reboussin B A, Rushing J, Marshall J A, Hamman R F. Antioxidant nutrient intake and diabetic retinopathy. The San Luis Valley diabetes study.  Ophthalmology. 1998;  105 2264-2270
  • 71 Mc Cord J MC. Oxygen-derived free radicals in postischemic tissue injury.  N Engl J Med. 1985;  312 159-163
  • 72 Michelson I C. The mode of development of the vascular system of the retina, with some observations on its significance for certain retinal disease.  Trans Ophthalmol Soc UK. 1948;  68 137-180
  • 73 Miller J W, Adamis A P, Shima D T. Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model.  Am J Pathol. 1994;  145 574-584
  • 74 Müller-Breitenkamp U, Ohrloff C, Hockwin O. Aspekte zur Physiologie, Pathologie und Epidemiologie der Katarakt.  Ophthalmologe. 1992;  89 257-267
  • 75 Muller D P. Vitamin E therapy in retinopathy of prematurity.  Eye. 1992;  6 221-225
  • 76 Murata T, Ishibashi T, Khalil A, Hata Y, Yoshikawa H, Inomata H. Vascular endothelial growth factor plays a role in hyperpermeability of diabetic retinal vessels.  Ophthalmic Res. 1995;  27 48-52
  • 77 Noell W K, Albrecht R. Irreversible effects of visible light on the retina: Role of vitamin A.  Science. 1971;  172 76-80
  • 78 Noell W K. Possible mechanisms of photoreceptor damage by light in mammalian eyes.  Vision Res. 1980;  20 1163-1171
  • 79 Ohrloff C, Hockwin O, Olson R, Dickman S. Glutathione peroxidase, glutathione reductase and superoxide dismutase in the aging lens.  Curr Eye Res. 1984;  3 109-115
  • 80 Organisciak D T, Wang H M, Kou A l. Ascorbate and glutathione levels in the developing normal and dystrophic rat retina: effect of intense light exposure.  Curr Eye Res. 1984;  3 257-267
  • 81 Owens W C, Owens E U. Retrolental fibroplasia in premature infants II. Studies on the prophylaxis of the disease: the use of alpha-tocopherol acetate.  Am J Ophthalmol. 1949;  32 1631-1637
  • 82 Parks D A, Williams T K, Beckmann J S. Conversion of xanthin dehydrogenase to oxidase in ischemic rat intestine: a reevaluation.  Am J Physiol. 1989;  254 G768-G774
  • 83 Persad S, Menon I A, Basu P K, Carre F. Phototoxicity of chlorpromazine on retinal pigment epithelial cells.  Curr Eye Res. 1988;  7 1-9
  • 84 Pierce E A, Avery R L, Foley E D, Aiello L P, Smith L E. Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization.  Proc Natl Acad Sci USA. 1995;  92 905-909
  • 85 Polidori M C, Cherubini A, Stahl W, Senin U, Sies H, Mecocci P. Plasma carotenoid and malondialdehyde levels in ischemic stroke patients: relationship to early outcome.  Free Radical Res. 2002;  36 265-268
  • 86 Pryor W A, Stahl W, Rock C L. Beta-carotene: from biochemistry to clinical trials.  Nutr Rev. 2000;  58 39-53
  • 87 Rao P S, Cohen M V, Müller H S. Production of free radicals and lipid peroxides in early myocardial ischemia.  J Mol Cell Cardiol. 1983;  15 713-716
  • 88 Rao N A, Thaete L G, Delmage J M, Sevanian A. Superoxide dismutase in ocular structures.  Invest Ophth Vis Sci. 1985;  26 1778-1781
  • 89 Rathbun W B. Lenticular glutathione synthesis: rate-limiting factors in its regulation and decline.  Curr Eye Res. 1984;  3 101-108
  • 90 Rösen P, Oestreich R, Tschöpe D. Vitamin and diabetes.  Fat Science and Technology. 1991;  93 425-431
  • 91 Rolfsen M L, Davis W R. Cerebral function during cardiac arrest.  Crit Care Med. 1989;  17 183-292
  • 92 Rozanowska M, Jarvis-Evans J, Korytowski W, Boulton M E, Burke J M, Sarna T. Blue light-induced reactivity of retinal age pigment.  J Biol Chem. 1995;  270 18825-18830
  • 93 Ruef J, Hu Z Y, Yin L Y, Wu Y, Hanson S R, Kelly A B, Harker L A, Rao G N, Runge M S, Patterson C. Induction of vascular endothelial growth factor in balloon-injured baboon arteries. A novel role for reactive oxygen species in atherosclerosis.  Circ Res. 1997;  81 24-33
  • 94 Russell G A, Cooke R W. Randomised controlled trial of allopurinol prophylaxis in very preterm infants.  Arch Dis Child Neonatal Ed. 1995;  73 27-31
  • 95 Ruffolo J J, Ham W T, Mueller H A, Millen J E. Photochemical lesions in the primate retina under conditions of elevated blood oxygen.  Invest Ophth Vis Sci. 1984;  25 893-898
  • 96 Schalch W. Carotenoids in the retina: a review of their possible role in preventing or limiting damage caused by light and oxygen. In: Emerit I, Chance B (eds) Free Radicals and Aging. Basel, Switzerland; Birkhäuser Verlag 1992: 280-298
  • 97 Schmidt-Erfurth U. für die PDT Studiengruppe . Photodynamische Therapie - eine schonende Alternative zur Behandlung der exsudativen Makuladegeneration.  Klin Monatsbl Augenheilkd. 1998;  213 11-15
  • 98 Schroder S, Palinski W, Schmid-Schonbein G W. Activated monocytes and granulocytes, capillary nonperfusion, and neovascularization in diabetic retinopathy.  Am J Pathol. 1991;  139 81-100
  • 99 Shaban H, Richter C. A2E and blue light in the retina: The paradigm of age-related macular degeneration.  Biol Chem. 2002;  383 537-545
  • 100 Shvedova A A, Alekseeva O M, Kuliev L Y, Muranov K O, Kozlov Y uP, Kagan E V. Damage of photoreceptor membrane lipids and proteins induced by photosensitized generation of singlet oxygen.  Curr Eye Res. 1982;  2 683-689
  • 101 Sickenberg M, Schmidt-Erfurth U, Miller J W, Pournaras C J, Zografos L, Piguet B, Donati G, Laqua H, Barbazetto I, Gragoudas E S, Lane A M, Birngruber R, van den Bergh H, Strong H A, Manjuris U, Gray T, Fsadni M, Bressler N M. A preliminary study of photodynamic therapy using verteporfin for choroidal neovascularization in pathologic myopia, ocular histoplasmosis syndrome, angioid streaks, and idiopathic causes.  Arch Ophthalmol. 2000;  118 327-336
  • 102 Snodderly D M. Evidence for protection against age-related macular degeneration by carotenoids and antioxidant vitamins.  Am J Clin Nutr. 1995;  62 1448S-1461S
  • 103 Spector A. The search of a solution to senile cataracts.  Invest Ophth Vis Sci. 1984;  25 130-146
  • 104 Spector A. Oxidation and aspects of ocular pathology.  Clao Journal. 1990;  16 8-10
  • 105 Srivastava S K, Ansari N H, Awasthi Y C. Lens glutathione depletion of 1-chloro-2,4-dinitrobenzene and oxidative stress.  Curr Eye Res. 1984;  3 117-119
  • 106 Stephens R J, Negi D S, Short S M, van Kuijk F JGM, Dratz E A, Thomas D W. Vitamin E distribution in ocular tissues following longterm dietary depletion and supplementation as determined by microdissection and gas chromatography-mass spectrometry.  Exp Eye Res. 1988;  47 237-245
  • 107 TAP Study Group . Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin. One year results of 2 randomized clinical trials - TAP report 1.  Arch Ophthalmol. 1999;  117 1329-1345
  • 108 Thieme H, Aiello L P, Takagi H, Ferrara N, King G L. Comparative analysis of vascular endothelial growth factor receptors on retinal and aortic vascular endothelial cells.  Diabetes. 1995;  44 98-103
  • 109 Thomas P D, Mao G D, Rabinovitch A, Poznanzky M J. Inhibition of superoxide-generating NADPH oxidase of human neutrophils by lazaroids (21-aminosteroids and 2-methylaminochromans).  Biochem Pharmacol. 1993;  45 241-251
  • 110 Tolentino M J, Miller J W, Gragoudas E S, Chatzistefanou K, Ferrara N, Adamis A P. Vascular endothelial growth factor is sufficient to produce iris neovascularization and neovascular glaucoma in a non-human primate.  Arch Ophthalmol. 1995;  114 964-970
  • 111 Tolentino M J, Miller J W, Gragoudas E S, Jakobiec F A, Flynn E, Chatzistefanou K, Ferrara N, Adamis A P. Intravitreous injections of vascular endothelial growth factor produce retinal ischemia and microangiopathy in an adult primate.  Ophthalmology. 1996;  103 1820-1828
  • 112 Toyoda Y, Thomson L R, Langner A, Craft N E, Garnett K M, Nichols C R, Cheng K M, Dorey C K. Effect of dietary zeaxanthin on tissue distribution of zeaxanthin and lutein in quail.  Invest Ophthalmol Vis Sci. 2002;  43 1210-1221
  • 113 Tso M OM, Woodford B J, Lamm K W. Distribution of ascorbate in normal primate retina and after photic injury: a biochemical, morphological correlated study.  Curr Eye Res. 1984;  3 181-191
  • 114 Uzel N, Sivas A, Uysal M, Oz H. Erythrocyte lipid peroxidation and glutathione peroxidase activities in patients with diabetes mellitus.  Horm Metab Res. 1987;  19 89-90
  • 115 Vaino H. Chemoprevention of cancer: lessons to be learned from the beta-carotene trials.  Toxicol Lett. 2000;  15 513-517
  • 116 Varma S D, Srivastava V K, Richards R D. Photoperoxidation in lens and cataract formation: Preventive role of superoxide dismutase, catalase and vitamin C.  Ophthalmic Res. 1982;  14 167-175
  • 117 Varma S D, Richards R D. Ascorbic acid and the eye lens.  Ophthalmic Res. 1988;  20 164-173
  • 118 Whilmark U, Wrigstad A, Roberg K, Nilsson S EG, Brunk U. Lipofuscin accumulation in cultured retinal pigment epithelial cells causes enhanced sensitivity to blue light irradiation.  Free Rad Biol Med. 1997;  22 1229-1234
  • 119 Wiegand R D, Giusto N M, Rapp L M, Anderson R E. Evidence for rod outer segment lipid peroxidation following constant illumination of the rat retina.  Invest Ophth Vis Sci. 1983;  24 1433-1435
  • 120 Wright P S, Loudy D E, Cross-Doersen D E, Montgomery L R, Sprinkle-Cavallo J, Miller J A, Distler C M, Lower E E, Woessner R D. Quantitation of vascular endothelial growth factor mRNA levels in human breast tumors and metastatic lymph nodes.  Exp Mol Pathol. 1997;  64 41-51
  • 121 Yamashita H, Horie K, Yamamoto T, Nagano T, Hirano T. Light-induced retinal damage in mice.  Retina. 1992;  12 59-66
  • 122 Young R W. Pathophysiology of age-related macular degeneration.  Surv Ophthalmol. 1987;  31 291-306
  • 123 Young R W. Solar radiation and age-related macular degeneration.  Surv Ophthalmol. 1988;  32 252-269
  • 124 Zuclich J A. Ultraviolett induced damage in the primate cornea and retina.  Curr Eye Res. 1984;  3 27-34

Albert J. Augustin

Augenklinik · Klinikum Karlsruhe

Moltkestraße 90

76133 Karlsruhe

Phone: + 49-721-9742000

Fax: + 49-721-9742009

Email: AlbertAugustin@csi.com