Subscribe to RSS
DOI: 10.1055/s-2003-37112
A Straightforward Route to Indolizidine and Quinolizidine Analogs as new Potential Antidiabetics
Publication History
Publication Date:
07 February 2003 (online)
Abstract
New polyhydroxylated indolizidine and quinolizidine analogs of castanospermine are efficiently obtained by a double reductive amination of enantiopure cyclic ketoaldehydes. As rigidified mimics of disaccharides, these compounds are expected to exhibit significant antidiabetic properties.
Key words
glycosidases - alkaloids - carbocycles - bicyclic compounds - reductive amination
- 1
Holman RR.Cull CC.Tyrner RC. Diabetes Care 1999, 22: 960 - 2
Matsumoto K.Yano M.Miyake S.Ueki Y.Yamaguchi Y.Akazawa S.Tominaga Y. Diabetes Care 1998, 21: 256 - 3
Johnson PS.Coniff RF.Hoogwerf BJ.Santiago JV.Pi-Sunyer FX.Krol A. Diabetes Care 1994, 17: 20 -
4a
Shapiro JA.Seaton TB. Arch. Inter. Med. 1994, 154: 2442 -
4b
Cheng XM. In Annu. Rep. Med. Chem. Vol. 30:Bristol JA. Academic Press; San Diego: 1995. p.313 -
4c
Gaudillière B. In Annu. Rep. Med. Chem. Vol. 34:Doherty AM. Academic Press; San Diego: 1999. p.325 -
5a
Carbohydrate Mimics, Concepts and Methods
Chapleur Y. Wiley-VCH; New York: 1998. -
5b
Watson AA.Fleet GWJ.Asano N.Molyneux RJ.Nash RJ. Phytochemistry 2001, 56: 265 -
5c
Kleban M.Hilgers P.Greul JN.Kugler RD.Li J.Picasso S.Vogel P.Jäger V. ChemBioChem. 2001, 5: 365 - 6
Iminosugars
as Glycosidases Inhibitors: Nojirimycin and Beyond
Stütz AE. Wiley-VCH; New York: 1999. - 7
Le Merrer Y.Gravier-Pelletier C.Maton W.Numa M.Depezay JC. Synlett 1999, 1322 - 9
Gravier-Pelletier C.Maton W.Lecourt T.Le Merrer Y. Tetrahedron Lett. 2001, 42: 4475 - 10
Shimizu S.Nakamura S.Nakada M.Shibasaki M. Tetrahedron 1996, 42: 13363 - 11
Harmon RE.Parsons JL.Cooke DW.Gupta SK.Schoolenberg J. J. Org. Chem. 1969, 11: 3684 - 13
Suenaga K.Araki K.Sengoku T.Uemura D. Org. Lett. 2001, 4: 527 - 14
Chiu P.Szeto CP.Geng Z.Cheng KF. Tetrahedron Lett. 2001, 42: 4091 -
15a
Dzierba CD.Zandi KS.Moellers T.Shea KJ. J. Am. Chem. Soc. 1996, 118: 4711 -
15b
Hudlicky T.Sinai-Zingde G.Natchus MG. Tetrahedron Lett. 1987, 28: 5287 - 16
Azami H.Barrett D.Matsuda K.Tsutsumi H.Washizuka K.Sakurai M.Kuroda S.Shirai F.Chiba T.Kamimura T.Murata M. Bioorg. Med. Chem. 1999, 7: 1665 - 17
Magnus P.Gallagher T.Brown P.Huffman JC. J. Am. Chem. Soc. 1984, 106: 2105 - 18
Manescalchi F.Nardi AR.Savoia D. Tetrahedron Lett. 1994, 35: 2775
References
Satisfactory analytical and/or spectroscopic data were obtained for all new compounds.
12In this case, an unexpected lactone, resulting from double bond reduction followed by transketalization and subsequent lactonization, was isolated in a non-reproducible 63% yield (Figure [3] ).
19
Typical Procedure
for the Double Reductive Amination:
To a solution
of ketoaldehyde 8 or 12 (387 µmol)
in methanol (1 mL), at 0 °C, were successively
added sodium cyanoborohydride (753 µmol, 1.9 equiv) and
a mixture of primary amine (387 µmol, 1 equiv) and HOAc
(387 µmol, 1 equiv) in MeOH (400 µL). After 24
h stirring at 20 °C and concentration in vacuo,
a 10% aq solution of NaOH was added and the mixture was
extracted with CH2Cl2. The combined organic
layers were dried (anhyd Na2SO4), filtered
and concentrated in vacuo. Flash chromatography of the residue afforded
the indolizidine or quinolizidine analog in yield ranging from 50% to
75% according to the ketoaldehyde and to the primary amine
involved.
Selected physical data for compounds 15, 16a and 16b ([α]D
20 in
CH2Cl2 1H NMR [250
MHz unless indicated, δ (ppm), J (Hz)
and 13C NMR (62.5 MHz, δ(ppm)] in
CDCl3. Hydrogen and carbon atoms of the heterocycle have
been numbered according to the IUPAC nomenclature rules, and for
the N-side chain by A, B and C:
15: [α]D
20 +24.5
(c 1.1). 1H NMR (500
MHz): δ = 3.89 (ddd, 1 H, J
6,7
′ = 9.5
Hz, J
6,5 = 9.2
Hz, J
6,7 = 5.0
Hz, H6), 3.75 (dd, 1 H, J
A,A
′ = 10.4
Hz, J
A,B = 6.2
Hz, HA), 3.72 (dd, 1 H, J
A
′,A = 10.4
Hz, J
A
′,B = 5.0
Hz, HA
′), 3.60 (dd, 1 H, J
C,C
′ = 10.0
Hz, J
C,B = 5.9
Hz, HC), 3.57 (dd, 1 H, J
C
′,C = 10.0 Hz, J
C
′,B = 6.4
Hz, HC
′), 3.44 (dd, 1 H, J
4,3a = 10.0
Hz, J
4,5 = 9.2
Hz, H4), 3.36 (ddd, J
7a,3a = J
7a,7
′ = 4.4
Hz, J
7a,7 = 2.9 Hz,
1 H, H7a), 3.26 (dd, 1 H, J
5,6 = J
5,4 = 9.2
Hz, H5), 2.97-2.87 (m, 2 H, HB,2
′),
2.83 (ddd, 1 H, J
2,2
′ = 14.8
Hz, J
2,3
′ = 9.4 Hz, J
2,3 = 5.6
Hz, H2), 2.15 (ddd, 1 H, J
7,7
′ = 14.2
Hz, J
7,6 = 5.0
Hz, J
7,7a = 2.9
Hz, H7), 2.13-2.06 (m, 1 H, H3a), 1.86-1.73
(m, 2 H, H3,3
′), 1.42 (ddd, 1 H, J
7
′,7 = 14.2
Hz, J
7
′,6 = 9.5
Hz, J
7
′,7a = 4.4
Hz, H7
′), 1.38, 1.36 (2 s, 6 H, CMe2),
0.88 (s, 27 H, t-Bu), 0.05 (s, 18 H,
SiMe2). 13C NMR: δ = 109.1
(CMe2), 83.9 (C5), 79.1 (C4), 69.4
(C6), 63.3, 59.3 (CA,C), 60.7, 59.4 (C7a,B),
44.9 (C2), 41.9 (C3a), 35.3 (C7), 29.7
(C3), 27.0 (CMe2), 25.9, 18.3, 18.2 (t-Bu), -4.5, -4.8,
-5.4
(SiMe2). HRMS (CI, CH4) calcd for C32H68NO5Si3 [M+ + 1]:
630.4405. Found: 630.4393.
16a: [α]D
20 +14
(c 1.0). 1H NMR: δ = 4.12
(dd, 1 H, J
5,4a = 11.1
Hz, J
5,6 = 9.1
Hz, H5), 3.95 (ddd, 1 H, J
7,8 = 11.0 Hz, J
7,6 = 9.0
Hz, J
7,8
′ = 3.8
Hz, H7), 3.72 (dd, 1 H, J
A
′,A = 10.3
Hz, J
A
′,B = 6.9
Hz, HA
′), 3.56 (dd, 1 H, J
A,A
′ = 10.3
Hz, J
A,B = 4.6
Hz, HA), 3.60-3.49 (m, 2 H, HC,C
′), 3.24
(dd, 1 H, J
6,7 = J
6,5 = 9.0
Hz, H6), 3.20-3.10 (m, 1 H, HB),
3.06 (ddd, 1 H, J
8a,4a = J
8a,8 = J
8a,8
′ = ca.
3.2 Hz, H8a), 2.93-2.77 (m, 1 H, H2),
2.39 (ddd, 1 H, J
8,8
′ = 14.7
Hz, J
8,7 = J
8,8a = 3.2
Hz, H8), 2.26 (ddd, 1 H, J
2
′,2 = J
2
′,3
′ = 11.5 Hz, J
2
′,3 = 1.9
Hz, H2
′), 2.04-1.85 (m,
1 H, H4), 1.81-1.53 (m, 3 H, H4a,3,3
′),
1.52-1.40 (m, 1 H, H4
′),
1.38 (s, 6 H, CMe2), 1.40-1.34 (m, 1 H, H8
′),
0.88, 0.87 (2 s, 27 H, t-Bu), 0.09, 0.08,
0.06, 0.04, 0.02 (s, 18 H, SiMe2). 13C
NMR: δ = 108.7 (CMe2), 85.4 (C6),
74.9 (C5), 68.6 (C7), 62.9 (CA),
59.8 (CB), 59.4 (CC), 58.8 (C8a),
47.8 (C2), 40.0 (C4a), 37.5 (C8), 30.2
(C3), 27.1, 26.9 (CMe2), 25.9, 18.2 (t-Bu), 22.0 (C4),
-4.4, -4.7, -5.4, -5.6
(SiMe2). HRMS (CI, CH4) calcd for C33H70NO5Si3 [M+ + 1]:
644.4562. Found: 644.4556.
16b: [α]Hg, 365
20 +5
(c 1.0). 1H NMR: δ = 3.75
(dd, 1 H, J
A
′,A = 10.4
Hz, J
A
′,B = 8.2
Hz, HA
′), 3.71 (dd, 1 H, J
A,A
′ = 10.4
Hz, J
A,B = 4.6
Hz, HA), 3.81-3.66 (m, 1 H, H7), 3.59
(dd, 1 H, J
C,C
′ = 10.0
Hz, J
C,B = 5.3
Hz, HC), 3.53 (dd, 1 H, J
C
′,C = 10.0
Hz, J
C
′,B = 7.4
Hz, HC
′), 3.32 (dd, 1 H, J
6,7 = J
6,5 = 9.1
Hz, H6), 3.27-3.14 (m, 1 H, HB),
2.97 (dd, 1 H, J
5,6 = 10.8
Hz, J
5,4a = 9.1
Hz, H5), 2.91-2.80 (m, 1 H, H2), 2.48
(ddd, 1 H, J
8a,4a = 12.8
Hz, J
8a,8
′ = 9.0
Hz, J
8a,8 = 4.0
Hz, H8a), 2.45-2.31 (m, 2 H, H2
′,8),
2.04-1.90 (m, 1 H, H4), 1.69-1.54 (m,
1 H, H3), 1.50-1.39 (m, 2 H, H4a,3
′),
1.37, 1.36 (2 s, 6 H, CMe2), 1.31-1.20 (m, 1
H, H8
′), 1.07-0.93 (m, 1
H, H4
′), 0.88, 0.87 (2 s, 27 H, t-Bu), 0.08, 0.07, 0.03, 0.02 (s, 18
H, SiMe2). 13C NMR: δ = 111.3
(CMe2), 84.2 (C6), 79.9 (C5), 70.3
(C7), 64.2 (CA), 61.4 (CB), 60.6
(CC), 59.2 (C8a), 48.1 (C2), 44.5
(C4a), 38.6 (C8), 28.5 (C3), 27.0
(CMe2), 25.9, 18.2 (t-Bu),
25.6 (C4), -4.4, -4.9, -5.3, -5.4, -5.6
(SiMe2). HRMS (CI, CH4) calcd for C33H70NO5Si3 [M+ + 1]: 644.4562.
Found: 644.4570.