Int J Sports Med 2003; 24(3): 166-172
DOI: 10.1055/s-2003-39086
Training & Testing
© Georg Thieme Verlag Stuttgart · New York

The Response of Trained Athletes to Six Weeks of Endurance Training in Hypoxia or Normoxia

N.  Ventura1 , H.  Hoppeler1 , R.  Seiler2 , A.  Binggeli2 , P.  Mullis3 , M.  Vogt1
  • 1 University of Bern, Dept. of Anatomy, Bern 9, Switzerland
  • 2 Institute of Sport Sciences ISS, Federal Office of Sports, Magglingen, Switzerland
  • 3 Inselspital, University Hospital, Bern, Switzerland
Further Information

Publication History

Accepted after revision: 25 July 2002

Publication Date:
12 May 2003 (online)

Abstract

This study was performed to investigate the effect of training under simulated hypoxic conditions. Hypoxia training was integrated into the normal training schedule of 12 endurance trained cyclists. Athletes were randomly assigned to two groups and performed three additional training bouts per week for six weeks on a bicycle ergometer. One group (HG) trained at the anaerobic threshold under hypoxic conditions (corresponding to an altitude of 3200 m) while the control group (NG) trained at the same relative intensity at 560 m. Preceding and following the six training weeks, performance tests were performed under normoxic and hypoxic conditions. Normoxic and hypoxic V˙O2max, maximal power output as well as hypoxic work-capacity were not improved after the training period. Testing under hypoxic conditions revealed a significant increase in oxygen saturation (SpO2, from 67.1 ± 2.3 % to 70.0 ± 1.7 %) and in maximal blood lactate concentration (from 7.0 to 9.1 mM) in HG only. Ferritin levels were decreased from 67.4 ± 16.3 to 42.2 ± 9.5 µg/l (p < 0.05) in the HG and from 54.3 ± 6.9 to 31.4± 8.0 µg/l (p = 0.17) in the NG. Reticulocytes were significantly increased in both groups by a factor of two. In conclusion, the integration of six weeks of high intensity endurance training did not lead to improved performance in endurance trained athletes whether this training was carried out in hypoxic or normoxic conditions.

References

  • 1 Bailey D M, Davies B. Physiological implications of altitude training for endurance performance at sea level: A review.  Br J Sports Med. 1997;  31 183-190
  • 2 Bailey D M, Davies B, Baker J. Training in hypoxia: modulation of metabolic and cardiovascular risk factors in men.  Med Sci Sports Exerc. 2000;  32 1058-1066
  • 3 Bergstroem J, Hermansen L, Hultman E, Saltin B. Diet muscle glycogen and physical performance.  Acta Physiol Scand. 1967;  71 172-179
  • 4 Brooke M H, Kaiser K. The "myosin adenosine triphosphatase" systems: the nature of their pH lability and sulfhydryl dependence.  J Histochem Cytochem. 1970;  18 670-672
  • 5 Budgett R. Fatigue and underperformance in athletes: the overtraining syndrome.  Br J Sports Med. 1998;  32 107-110
  • 6 Desplanches D, Hoppeler H, Linossier M T, Denis C, Claassen H, Dormois D, Lacour J R, Geyssant A. Effects of training in normobaric hypoxia on human muscle ultrastructure.  Pflugers Arch. 1993;  425 263-267
  • 7 Fry R W, Morton A R, Garciawebb P, Crawford G PM, Keast D. Biological Responses to overload training in endurance sports.  Eur J Appl Physiol. 1992;  64 335-344
  • 8 Gastmann U, Petersen K G, Bocker J, Lehmann M. Monitoring intensive endurance training at moderate energetic demands using resting laboratory markers failed to recognize an early overtraining stage.  J Sports Med Phys Fitness. 1998;  38 188-193
  • 9 Hooper S L, Mackinnon L T. Monitoring overtraining in athletes. Recommendations.  Sports Med. 1995;  20 321-327
  • 10 Hoppeler H, Howald H, Conley K, Lindstedt S L, Claassen H, Vock P, Weibel E R. Endurance training in humans: Aerobic capacity and structure of skeletal muscle.  J Appl Physiol. 1985;  59 320-327
  • 11 Hoppeler H, Vogt M. Muscle tissue adaptations to hypoxia.  J Exp Biol. 2001;  204 3133-3139
  • 12 Jeukendrup A E, Hesselink M K, Snyder A C, Kuipers H, Keizer H A. Physiological changes in male competitive cyclists after two weeks of intensified training.  Int J Sports Med. 1992;  13 534-541
  • 13 Jeukendrup A E, Hesselink M K. Overtraining-what do lactate curves tell us?.  Br J Sports Med. 1994;  28 239-240
  • 14 Kellmann M, Kallus K W. Der Erholungs-Belastungs-Fragebogen für Sportler. Manual. Frankfurt am Main; Swets Test Services 2000
  • 15 Kentta G, Hassmen P. Overtraining and recovery. A conceptual model.  Sports Med. 1998;  261 1-16
  • 16 Lehmann M, Foster C, Keul J. Overtraining in endurance athletes - A brief review.  Med Sci Sports Exerc. 1993;  25 854-862
  • 17 Levine B D, Stray-Gundersen J. A practical approach to altitude training: where to live and train for optimal performance enhancement.  Int J Sports Med. 1992;  13 S209-S212
  • 18 Levine B D, Stray-Gundersen J. ”Living high-training low“. Effect of moderate-altitude acclimatization with low-altitude training on performance.  J Appl Physiol. 1997;  83 102-112
  • 19 Lucia A, Hoyos J, Perez M, Chicharro J L. Heart rate and performance parameters in elite cyclists: a longitudinal study.  Med Sci Sports Exerc. 2000;  3210 1777-1782
  • 20 McManus IFA, Barger ID, DeLamater ED. In: Pearse AGE (ed). Histochemistry; theoretical and applied. Boston; Little, Brown & Co 1968
  • 21 Meeuwsen T, Hendriksen I J, Holewijn M. Training-induced increases in sea-level performance are enhanced by acute intermittent hypobaric hypoxia.  Eur J Appl Physiol. 2001;  844 283-290
  • 22 Melissa L, MacDougall J D, Tarnopolsky M A, Cipriano N, Green H J. Skeletal muscle adaptations to training under normobaric hypoxic versus normoxic conditions.  Med Sci Sports Exercise. 1997;  292 238-243
  • 23 Mizuno M, Juel C, Bro Rasmussen T, Mygind E, Schibye B, Rasmussen B, Saltin B. Limb skeletal muscle adaptation in athletes after training at altitude.  J Appl Physiol. 1990;  68 496-502
  • 24 Snyder A C. Overtraining and glycogen depletion hypothesis.  Med Sci Sports Exerc. 1998;  307 1146-1150
  • 25 Svedenhag J, Piehl-Aulin K, Skog C, Saltin B. Increased left ventricular muscle mass after long-term altitude training in athletes.  Acta Physiol Scand. 1997;  1611 63-70
  • 26 Terrados N, Melichna J, Sylven C, Jansson E, Kaijser L. Effects of training at simulated altitude on performance and muscle metabolic capacity in competitive road cyclists.  Eur J Appl Physiol. 1988;  57 203-209
  • 27 Terrados N, Jansson E. Is hypoxia a stimulus for synthesis of oxidative enzymes and myoglobin?.  J Appl Physiol. 1990;  68 2369-2372
  • 28 Urhausen A, Gabriel H, Kindermann W. Blood hormones as markers of training stress and overtraining.  Sports Med. 1995;  204 251-276
  • 29 Vogt M, Puntschart A, Geiser J, Zuleger C, Billeter R, Hoppeler H. Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions.  J Appl Physiol. 2001;  911 173-182
  • 30 Wenger R H, Gassmann M. Oxygenes and the hypoxia-inducible factor-1.  Biol Chem. 1997;  378 609-616

M. Vogt

University of Bern · Department of Anatomy

Buehlstrasse 26 · 3012 Bern · Switzerland·

Phone: ++41 31 631 48 83

Fax: ++41 31 631 38 07

Email: vogt@ana.unibe.ch