References and Notes
1a
Cintas P.
Tetrahedron
1991,
47:
6079
1b
Seyden-Penne J.
Chiral Auxiliaries and Ligands in Asymmetric Synthesis
Wiley;
New York:
1995.
1c
Kunz H.
Angew. Chem., Int. Ed. Engl.
1993,
32:
336
1d
Rück K.
Kunz H.
Chiral Auxiliaries in Cycloadditions
Wiley;
New York:
1995.
1e
Hultin PG.
Earle MA.
Sudharshan M.
Tetrahedron
1997,
53:
14823
2a
Totani K.
Nagatsuka T.
Takao K.
Ohba S.
Tadano K.
Org. Lett.
1999,
1:
1447
2b
Munakata R.
Totani K.
Takao K.
Tadano K.
Synlett
2000,
979
2c
Nagatuska T.
Yamaguchi S.
Totani K.
Takao K.
Tadano K.
Synlett
2001,
481
2d
Totani K.
Nagatsuka T.
Yamaguchi S.
Takao K.
Ohba S.
Tadano K.
J. Org. Chem.
2001,
66:
5965
2e
Nagatsuka T.
Yamaguchi S.
Totani K.
Takao K.
Tadano K.
J. Carbohydr. Chem.
2001,
20:
519
2f
Totani K.
Asano S.
Takao K.
Tadano K.
Synlett
2001,
1772
3a For a recent review on [3+2] cycloadditions, see: Gothelf KV.
Jorgensen KA.
Chem. Rev.
1998,
98:
863
3b For a recent paper on the sugar-based stereoselective [3+2] cycloadditions of nitrile oxide, see: Desroses M.
Chéry F.
Tatibouët A.
De Lucchi O.
Rollin P.
Tetrahedron: Asymmetry
2002,
13:
2535
4a
Hassner A.
Rai KML.
Synthesis
1989,
57
4b
Rai KML.
Hassner A.
Indian J. Chem., Sect. B
1997,
36:
242
5 All new compounds gave spectroscopic data (1H, 13C NMR, IR, and HRMS) in agreement with the structures depicted. Yields refer to purified sample by chromatography on silica gel.
6 The [3+2] Cycloaddition of 2 using Benzonitrile Oxide in CH2Cl2; Preparation of Methyl 6-deoxy-4-O-[(5R)-3-phenyl-Δ2-isoxazoline-5-carbonyl]-2,3-di-O-t-butyldimethylsilyl-α-d-glucopyranoside (3
R). To a cooled (0 °C) stirred solution of 2 (211 mg, 0.459 mmol) in CH2Cl2 (4 mL) was added benzonitrile oxide (274 mg, 2.28 mmol). The mixture was stirred at r.t. for 4 h, then diluted with EtOAc (20 mL), and washed with sat. aq NH4Cl (10 mL
× 3). The organic layer was dried over anhyd Na2SO4 and concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc-hexane = 1:40) to give 262 mg (96%) of 3
R as colorless oil. Compound 3
R: TLC, Rf 0.47 (EtOAc-hexane = 1:6); IR(neat): 3100-2800, 1750, 1600 cm-1; 1H NMR (300 MHz, CDCl3) δ: 0.10, 0.11, 0.12 (total 12 H, 3s), 0.85, 0.93 (each 9 H, each s), 1.10 (3 H, d, J = 6.6 Hz), 3.37 (3 H, s), 3.52 (1 H, dd, J = 11.2, 16.8 Hz), 3.67 (1 H, dd, J = 3.7, 9.2 Hz), 3.80 (1 H, dd, J = 6.3, 16.8 Hz), 3.83 (1 H, m), 4.01 (1 H, t, J = 9.2 Hz), 4.62 (1 H, d,
J = 3.7 Hz), 4.74 (1 H, dd, J = 9.2, 9.9 Hz), 5.14 (1 H, dd,
J = 6.3, 11.2 Hz), 7.40-7.70 (5 H, m); 13C NMR (75 MHz, CDCl3) δ: -4.49, -4.39, -3.39, -3.06, 17.32, 17.88, 18.41, 25.87 × 3, 26.12 × 3, 38.00, 54.92, 65.16, 71.62, 74.45, 78.12, 78.58, 100.06, 126.94 × 2, 128.77 × 2, 130.53 × 2, 156.37, 169.40; HRMS: m/z calcd for C28H46NO6Si2 (M+ - OCH3): 548.2864, found 548.2872.
7 The [3+2] cycloaddition was best achieved in CH2Cl2 (96%). In benzene, the cycloaddition provided 3
R in 92% yield, and the dr of the adducts was 99:1.
8 We also conducted the Lewis acid (2 equiv)-mediated cycloaddition of 2 with benzonitrile oxide. The results are as follows: 1) BF3·OEt2/CH2Cl2/-78 °C/6 h (97% recovery of 2), 2) ZnI2/CH2Cl2/-78 °C/6 h (90% recovery of 2), 3) Yb(OTf)3/CH2Cl2/-78 °C/6 h (27% of the adduct, dr = ca 6:1, 47% recovery of 2), 4) MgBr2/CH2Cl2/-78 °C to r.t./6 h (49% of the adduct, dr = ca 7:1, 47% recovery of 2).
9 Compound 4
R: TLC, Rf 0.54 (EtOAc-hexane = 1:6); IR(neat): 3100-2800, 1750, 1600 cm-1: 1H NMR (300 MHz, CDCl3) δ: 0.07, 0.09, 0.10 (total 12 H, 3s), 0.83, 0.92 (each 9 H, each s), 1.10 (3 H, d, J = 6.2 Hz), 1.22 (9 H, s), 3.14 (1 H, dd, J = 11.0, 16.9 Hz), 3.36 (3 H, s), 3.38 (1 H, dd, J = 5.9, 16.9 Hz), 3.65 (1 H, dd, J = 3.3, 9.2 Hz), 3.82 (1 H, dq, J = 6.2, 9.2 Hz), 3.98 (1 H, t, J = 9.2 Hz), 4.62 (1 H, d, J = 3.3 Hz), 4.70 (1 H, t, J = 9.2 Hz), 4.94 (1 H, dd, J = 5.9, 11.0 Hz); 13C NMR (75 MHz, CDCl3) δ: -4.49, -4.43, -3.39, -3.06, 17.30, 17.86, 18.42, 25.86 × 3, 26.14 × 3, 28.05 × 3, 32.80, 37.54, 54.92, 65.19, 71.60, 74.45, 77.81, 77.89, 100.06, 165.83, 169.88; HRMS m/z calcd for C26H50NO6Si2 (M+ - OCH3): 528.3177, found 528.3147.
10 (a) Compound 5
R: TLC, Rf 0.19 (EtOAc-hexane = 1:1); IR(neat): 3500(br), 3100-2800 cm-1; [a]D
22 -170 (c 1.01, CHCl3); 1H NMR (300 MHz, CDCl3) d 3.28 (1 H, dd, J = 7.9, 16.5 Hz), 3.39 (1 H, dd, J = 10.4, 16.5 Hz), 3.68 (1 H, dd, J = 4.3, 12.2 Hz), 3.87 (1 H, dd, J = 3.1, 12.2 Hz), 4.87 (1 H, dddd, J = 3.1, 4.3, 7.9, 10.4 Hz), 7.37-7.68 (5 H, m); 13C NMR (75 MHz, CDCl3) d: 36.29, 63.63, 81.21, 126.68 × 2, 128.69 × 2, 130.17 × 2, 157.08; HRMS m/z calcd for C10H11NO2 (M+): 177.0790, found 177.0790. (b) Curran and co-workers reported the preparation of 5
R from a 95:5 mixture of the [3+2] cycloaddition of the acryloyl amide of Oppolzer’s chiral sultam with benzonitrile oxide. They obtained the cycloadduct in a dr of 95:5, from which 5
R possessing [a]D
25 -161 (c 1.0, CHCl3) was prepared: Curran, D. P.; Kim, B. H.; Daugherty, J.; Heffner, T. A. Tetrahedron Lett. 1988, 29, 3555. (c) On the other hand, Akiyama and Ozaki reported the preparation of 5
S, which relied on the [3+2] cycloaddition of the acryloyl ester of optically active cyclitol (l-chiro-inositol) with benzonitrile oxide. By this chiral auxiliary-based methodology, they obtained a 95:5 mixture of the cycloadduct. From the major cycloadduct, 5S possessing [a]D
25 +172 (c 1.0, CHCl3) was prepared: Akiyama, T.; Okada, K.; Ozaki, S. Tetrahedron Lett. 1992, 33, 5766.
11 Compound 6
R: TLC, Rf 0.45 (EtOAc); IR(neat): 3480 (br), 3100-2800 cm-1: [α]D
22 -120 (c 0.88, CHCl3); 1H NMR (300 MHz, CDCl3) δ 1.21 (9 H, s), 2.88 (1 H, dd, J = 7.4, 16.7 Hz), 3.02 (1 H, dd, J = 10.4, 16.7 Hz), 3.55 (1 H, dd, J = 4.8, 12.0 Hz), 3.76 (1 H, m), 4.67 (1 H, dddd, J = 3.3, 4.8, 7.4, 10.4 Hz); 13C NMR (75 MHz, CDCl3) δ: 3 × 28.03, 33.03, 35.69, 63.76, 80.09, 166.59; HRMS m/z calcd for C8H15NO2 (M+): 157.1103, found 157.1105. Curran and co-workers reported the preparation of both 6
R and 6
S (each er = 95:5; [α]D
25
-127 (c 1.0, CHCl3) for 6
R and [α]D
25 +124 (c 1.0, CHCl3) for 6
S by the chiral auxiliary methodology. Using the same methodology, Akiyama and Ozaki obtained enantioenriched 6
S (dr of the cycloadduct = 91:9) possessing [α]D
20 +121 (c 1.68, CHCl3). See ref.
[10]
12 Retention times of racemic 7: t
R(S) = 17.1 min and t
R (R) = 19.7 min (DAICEL Chiralcel OD-H, 2-propanol-hexane = 1:8).
13 Retention times of racemic 8: t
R (S) = 22.0 min and t
R (R) = 25.2 min (DAICEL Chiralcel OJ-H, 2-propanol-hexane = 1:15).
14
Curran DP.
Kim BH.
Piyasena HP.
Loncharich RJ.
Houk KN.
J. Org. Chem.
1987,
52:
2137
15 The new template 9 was prepared from known compound 11 as shown below (Scheme 4). Compound 11 was prepared from tri-O-acetyl-d-glucal according to the reported procedure: Giuliano RM.
Jordan AD.
Gauthier AD.
Hoogsteen K.
J. Org. Chem.
1993,
58:
4979
16 The dr of the cycloadduct 10 was precisely determined by the chiral HPLC analysis after converting the adduct into the isoxazoline derivative 7.