Abstract
K-111, formerly BM 17.0744, (2,2-dichloro-12-(4-chlorophenyl)-dodecanoic acid) is a new insulin-sensitizer with peroxisome proliferator-activated receptor (PPAR) alpha activity but without PPAR gamma activity. We determined the efficacy of K-111 in non-human primates in increasing insulin-stimulated glucose uptake and improving metabolic syndrome, assessing the general health-related effects. Six adult male obese normoglycemic prediabetic and insulin-resistant rhesus monkeys were studied on vehicle and following K-111 treatment (four-week chronic dosing each of 3 doses: 1, 3, and 10 mg/kg/d) with assessment of changes in substrate, hormone, and blood pressure measurements and alterations in insulin sensitivity using the euglycemic, hyperinsulinemic clamp technique. K-111 led to significantly decreased body weight and improved hyperinsulinemia, insulin sensitivity, hypertriglyceridemia, and HDL-cholesterol levels without adipogenesis or significant effects on fasting glucose, 24-hour urine glucose excretion, systolic or diastolic blood pressure, plasma fibrinogen, total cholesterol, or chemistry and hematology profile. These benefits are similar to the health-improving effects of calorie restriction, providing preliminary evidence that K-111 has excellent potential as a calorie-restriction mimetic agent. These results indicate the necessity of future study of K-111 for metabolic syndrome in humans, and suggest potential in reducing the risks of diabetes and cardiovascular disease.
Key words
K-111 - BM 17.0744 - Hyperinsulinemia - Insulin resistance syndrome - Metabolic syndrome X - Dyslipidemia - Type 2 diabetes mellitus - Peroxisome proliferator-activated receptor α - Thiazolidinedione - Calorie restriction mimetic
References
-
1
Himsworth H P.
Diabetes mellitus: Its differentiation into insulin sensitive and insulin insensitive types.
Lancet.
1936;
1
127-130
-
2
DeFronzo R A, Tobin J D, Andres R.
Glucose clamp technique: A method for quantifying insulin secretion and resistance.
Am J Physiol.
1979;
237
E214-E223
-
3
DeFronzo R, Ferrannini E.
Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease.
Diabetes Care.
1991;
14
173-194
-
4
Lillioja S. et al .
Insulin resistance and insulin secretory dysfunction as precursors of non-insulin-dependent diabetes mellitus. Prospective studies of Pima Indians.
N Engl J Med,.
1993;
329 (27)
1988-92
-
5
Kahn C R.
Banting Lecture. Insulin action, diabetogenes, and the cause of type II diabetes.
Diabetes.
1994;
43 (8)
1066-1084
-
6
Beck-Nielsen H.
General characteristics of the insulin resistance syndrome: prevalence and heritability. European Group for the Study of Insulin Resistance (EGIR).
Drugs.
1999;
58 (Suppl 1)
7-10; discussion 75 - 82
-
7
Vague J.
The degree of masculine differentation of obesities: a factor determining predisposition to diabetes, atherosclerosis, gout, and uric calculous disease.
Am J Clin Nutr.
1956;
4
20-34
-
8
Reaven G.
Banting lecture 1988: Role of insulin resistance in human disease.
Diabetes.
1988;
30
1595-1607
-
9
Saltiel A R, Olefsky J M.
Thiazolidinediones in the treatment of insulin resistance and type II diabetes.
Diabetes.
1996;
45 (12)
1661-1669
-
10
Day C.
Thiazolidinediones: a new class of antidiabetic drugs.
Diabet Med.
1999;
16 (3)
179-192
-
11
Lehmann J M. et al .
An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR α).
J Biol Chem.
1995;
270 (22)
12 953-12 956
-
12
Meyer K. et al .
Species differences in induction of hepatic enzymes by BM 17.0744, an activator of peroxisome proliferator-activated receptor alpha (PPAR a).
Arch Toxicol.
1999;
73
440-450
-
13
Pill J, Meyer K.
Reduction of risk factors for cardiovascular complications by BM 17.0744.
Cardiovasc Drug Rev.
1999;
17
246-264
-
14
Meyer K. et al .
ω-Substituted alkyl carboxylic acids as antidiabtetic and lipid-lowering agents.
Eur J Med Chem.
1998;
33
775-778
-
15
Wurch T. et al .
Pharmacological analysis of wild-type alpha, gamma and delta subtypes of the human peroxisome proliferator-activated receptor.
Naunyn Schmiedebergs Arch Pharmacol,.
2002;
365 (2)
133-140
-
16
Pill J, Kuehnle H F.
BM 17.0744: a structurally new antidiabetic compound with insulin- sensitizing and lipid-lowering activity.
Metabolism.
1999;
48 (1)
34-40
-
17
Hansen B C, Bodkin N L.
Heterogeneity of insulin responses: phases in the continuum leading to non-insulin-dependent diabetes mellitus.
Diabetologia.
1986;
29
713-719
-
18
Bodkin N L, Metzger B L, Hansen B C.
Hepatic glucose production and insulin sensitivity preceding diabetes in monkeys.
Am J Physiol.
1989;
256 (Endocrinol Metab)
E676-E681
-
19
Hansen B, Bodkin N L.
β-cell hyperresponsiveness: earliest event in development of diabetes in monkeys.
Am J Physiol.
1990;
259 (Regulatory Integrative Comp Physiol 28)
R612-R617
-
20
Hannah J S. et al .
Changes in lipoprotein concentrations during the development of noninsulin dependent diabetes mellitus in obese rhesus monkeys (Macaca mulatta).
J Clin Endocrinol Metab.
1991;
72
1067-1072
-
21
Bodkin N L. et al .
Insulin-like growth factor-I in non-insulin-dependent diabetic monkeys: Basal plasma concentrations and metabolic effects of exogenously administered biosynthetic hormone.
Metabolism.
1991;
40
1131-1137
-
22
Bodkin N L, Hansen B C.
Antihypertensive effects of captopril without adverse effects on glucose tolerance in hyperinsulinemic rhesus monkeys.
J Med Primatol.
1995;
24
1-6
-
23
Ortmeyer H K. et al .
In vivo D-chiroinositol activates skeletal muscle glycogen synthase and inactivates glycogen phosphorylase in rhesus monkeys.
J Nutr Biochem.
1995;
6
499-503
-
24
Ortmeyer H K, Larner J, Hansen B C.
Effects of D-chiroinositol added to a meal on plasma glucose and insulin in hyperinsulinemic rhesus monkeys.
Obes Res.
1995;
3 (4)
605S-608S
-
25
Young A A. et al .
Glucose-lowering and insulin-sensitizing actions of Exendin-4: Studies in obese (ob/ob, db/db) diabetic mice, diabetic Fatty Zucker rats and diabetic monkeys (Macaca mulatta).
Diabetes.
1999;
48
1026-1034
-
26
Hannah J S. et al .
Effects of acipimox on the metabolism of free fatty acids and VLDL triglyceride.
Acta Diabetologia.
1995;
32
279-293
-
27
Winegar D A. et al .
Effects of fenofibrate on lipid parameters in obese rhesus monkeys.
J Lipid Res.
2001;
42 (10)
1543-1551
-
28
Kemnitz J W. et al .
Pioglitazone increases insulin sensitivity, reduces blood glucose, insulin, and lipid levels, and lowers blood pressure, in obese, insulin-resistant rhesus monkeys.
Diabetes.
1994;
43 (2)
204-211
-
29
Ortmeyer H K. et al .
A thiazolidinedione improves in vivo insulin action on skeletal muscle glycogen synthase in insulin-resistant monkeys.
Int J Exp Diabetes Res.
2000;
1 (3)
195-202
-
30 National Research Council Commission on Life Sciences - Institute of Laboratory Animal Resources .Guide for the care and use of laboratory animals. Washington, D.C.; National Academy Press 1996
-
31
Hansen B C. et al .
Neural influences on oscillations in basal plasma levels of insulin in monkeys.
Am J Physiol (Endocrinol Metab 1).
1981;
240
E5-E11
-
32
Hansen B C. et al .
Rapid oscillations of plasma insulin, glucagon, and glucose in obese and normal weight humans.
J Clin Endo Metab.
1982;
54
785-792
-
33
Ortmeyer H K, Bodkin N L, Hansen B C.
Adipose tissue glycogen synthase activation by in vivo insulin in spontaneously insulin-resistant and Type 2 (non-insulin-dependent) diabetic rhesus monkeys.
Diabetologia.
1993;
36
200-206
-
34
Ortmeyer H K, Bodkin N L, Hansen B C.
Insulin-mediated glycogen synthase activity in muscle of spontaneously insulin-resistant and diabetic rhesus monkeys.
Am J Physiol.
1993;
265 (Regulatory Integrative Comp Physiol 34)
R552-R558
-
35
Bogardus C. et al .
Relationship between degree of obesity and in vivo insulin action in man.
Am J Physiol.
1985;
248 (Endocrinol Metab 11)
E286-E291
-
36
Bogardus C. et al .
Correlation between muscle glycogen synthase activity and in vivo insulin action in man.
J Clin Invest.
1984;
73
1185-1190
-
37
Chen Y-D, Reaven G.
Insulin resistance and atherosclerosis.
Diabetes Reviews.
1997;
5
331-342
-
38
Beck-Nielsen H, Groop L C.
Metabolic and genetic characterization of prediabetic states. Sequence of events leading to non-insulin-dependent diabetes mellitus.
J Clin Invest.
1994;
94 (5)
1714-1721
-
39
Taskinen M R.
Insulin resistance and lipoprotein metabolism.
Curr Opin Lipidol.
1995;
6(3)
153-160
-
40
Kohrt W M. et al .
Insulin resistance in aging is related to abdominal obesity.
Diabetes.
1993;
42
273-281
-
41
Ortmeyer H K. et al .
In vivo D-chiroinositol activates skeletal muscle glycogen synthase and inactivates glycogen phosphorylase in normal and diabetic rhesus monkeys.
Diabetes.
1992;
41
106A
-
42
Oliver W J. et al .
A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport.
Proceedings of the National Academy of Sciences of the United States of America.
2001;
98
5306-5311
-
43
Shimaya A. et al .
The novel hypoglycemic agent YM440 normalizes hyperglycemia without changing body fat weight in diabetic db/db mice.
Metabolism.
2000;
49
411-417
-
44
Hansen B C, Bodkin N L.
Primary prevention of diabetes mellitus by prevention of obesity in monkeys.
Diabetes.
1993;
42
1809-1814
-
45
Bodkin N L, Ortmeyer H K, Hansen B C.
Long-term dietary restriction in older-aged rhesus monkeys: effects on insulin resistance.
J Gerontol A: Biol Sci Med Sci.
1995;
50
B142-B147
-
46
Maegawa H. et al .
Thiazolidine derivatives ameliorate high glucose-induced insulin resistance via the normalization of protein-tyrosine phosphatase activities.
J Biol Chem.
1995;
270 (13)
7724-7730
-
47
Kobayashi M. et al .
Pioglitazone increases insulin sensitivity by activating insulin receptor kinase.
Diabetes.
1992;
41 (4)
476-483
-
48
Ribon V. et al .
Thiazolidinediones and insulin resistance: peroxisome proliferatoractivated receptor gamma activation stimulates expression of the CAP gene.
Proc Natl Acad Sci USA.
1998;
95 (25)
14 751-14 756
-
49
Ciaraldi T P. et al .
Regulation of glucose transport in cultured muscle cells by novel hypoglycemic agents.
Metabolism.
1995;
44 (8)
976-981
-
50
Fujiwara T. et al .
Suppression of hepatic gluconeogenesis in long-term Troglitazone treated diabetic KK and C57BL/KsJ-db/db mice.
Metabolism.
1995;
44
486-490
-
51
Juge-Aubry C E. et al .
Regulation of the transcriptional activity of the peroxisome proliferator-activated receptor alpha by phosphorylation of a ligand-independent trans-activating domain.
J Biol Chem.
1999;
274 (15)
10 505-10 510
-
52
Torra I P, Gervois P, Staels B.
Peroxisome proliferator-activated receptor alpha in metabolic disease, inflammation, atherosclerosis and aging.
Curr Opin Lipidol.
1999;
10
151-159
-
53
Guerre-Millo M. et al .
Peroxisome proliferator-activated receptor alpha activators improve insulin sensitivity and reduce adiposity.
J Biol Chem.
2000;
275 (22)
16 638-16 642
-
54
Ye J M. et al .
Peroxisome proliferator-activated receptor (PPAR)-alpha activation lowers muscle lipids and improves insulin sensitivity in high fat-fed rats: comparison with PPAR-gamma activation.
Diabetes.
2001;
50 (2)
411-417
-
55
Alberti K, Zimmett P.
Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1. Diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation.
Diabetic Medicine.
1998;
15
539-553
-
56
Shibuya A. et al .
An autopsy case of troglitazone-induced fulminant hepatitis [see comments].
Diabetes Care.
1998;
21 (12)
2140-2143
-
57
Watkins P B, Whitcomb R W.
Hepatic dysfunction associated with troglitazone [letter; comment].
N Engl J Med.
1998;
338 (13)
916-917
-
58
Kemnitz J W. et al .
Dietary restriction increases insulin sensitivity and lowers blood glucose in rhesus monkeys.
Am J Physiol.
1994;
266
E540-E547
-
59
Lane M A. et al .
Diet restriction in rhesus monkeys lowers fasting and glucose-stimulated glucoregulatory end points.
Am J Physiol.
1995;
268
E941-E948
-
60
Ortmeyer H K, Bodkin N L, Hansen B C.
Chronic caloric restriction alters glycogen metabolism in rhesus monkeys.
Obes Res.
1994;
2
549-555
-
61
Cefalu W T. et al .
A study of caloric restriction and cardiovascular aging in cynomolgus monkeys (Macaca fascicularis): a potential model for aging research.
J Gerontol A Biol Sci Med Sci.
1997;
52 (1)
B10-B19
N. L. Bodkin, Ph. D.
Obesity and Diabetes Research Center, Dept. of Physiology, University of Maryland ·
10 S. Pine St. MSTF 6-00 · Baltimore · MD 21201 · USA
Telefon: + 1 (410) 706-3904
Fax: + 1 (410) 706-7540 ·
eMail: nbodkin678@aol.com