Handchir Mikrochir Plast Chir 2004; 36(1): 8-12
DOI: 10.1055/s-2004-815808
Übersichtsartikel

Georg Thieme Verlag Stuttgart · New York

Sensory Re-Education after Nerve Repair: Aspects of Timing

Wiederherstellung der Sensibilität und Nervenrekonstruktion: zeitliche AspekteB. Rosén1 , G. Lundborg1
  • 1Department of Hand Surgery, University Hospital MAS, Malmö, Sweden
Further Information

Publication History

Eingang des Manuskriptes: June 18, 2003

Angenommen: October 31, 2003

Publication Date:
13 April 2004 (online)

Zusammenfassung

Die Wiederkehr der funktionellen Sensibilität nach Nervendurchtrennung und -wiederherstellung ist oft unbefriedigend. Hier setzen wir den Zeitpunkt für das Wiedererlernen der Sensorik an, was ein Wiedererlernen und Modulieren des veränderten sensorischen Kodes aus der Hand nach einer derartigen Verletzung beinhaltet. Ein derartiges Training benutzt die Fähigkeit für das kortikale funktionelle Re-Modelling, das sowohl beim jugendlichen als auch beim erwachsenen Gehirn vorhanden ist. Das sensorische Wiedererlernen wird traditionell nicht eingesetzt, bevor nicht die Reinnervation der Hand erfolgt ist, und dieser späte Beginn des Trainings kann ein erklärender Faktor für die schlechten funktionellen Ergebnisse nach Nervenreparatur sein. Da die funktionellen Veränderungen der Reorganisation des Kortex nach den Veränderungen des peripheren Inputs sehr schnelle Prozesse sind, nehmen wir an, dass diese spezifische Intervention sehr früh in der Rehabilitationsphase eingesetzt werden sollte - schon in der Initialphase nach der Nervenreparatur, wenn noch keine Axone die asensible Hand erreicht haben. Das Ziel besteht darin, die zentrale funktionelle Reorganisation, die auf eine De-Afferenzierung in Verbindung mit einer Nervenverletzung und -reparatur erfolgt, zu vermeiden, zu minimieren und zu modulieren. Diese frühzeitige Intervention kann durch den Einsatz einer künstlichen Sensibilität bereits am ersten postoperativen Tag erfolgen. Entsprechend dieser Technik, die auf Sinnesunterstützung und dem Einsatz der multimodalen Fähigkeit des Gehirns beruht, nehmen Miniaturmikrophone an den Fingerspitzen der asensiblen Hand das Reibegeräusch auf, das durch die aktive Berührung erzeugt wird. Diese vibro-taktilen Signale werden stereophon in vibro-akustische Signale umgewandelt und führen so zu einem alternativen Feedback, der hypothetisch helfen soll, die kortikale Projektion der Hand zu erhalten oder wiedereinzurichten.

Abstract

The recovery of functional sensibility after nerve transection and repair is often disappointing. Here we address the timing of sensory re-education that aims at re-learning and modulating the changed sensory code from the hand after such an injury. Such training utilises the capacity for cortical functional re-modelling which characterises the young as well as the adult brain. Sensory re-education is traditionally not introduced until there is reinnervation in the hand, and such a late onset of training may be one explanatory factor for the poor functional results after nerve repair. Since functional reorganisation changes of the cortex occurring after changes in peripheral input are very fast processes, we suggest that this specific intervention should be introduced very early in the rehabilitation phase - already in the initial phase after nerve repair when no axons have yet arrived to the asensible hand. The goal is to avoid, minimise and modulate the central functional re-organisation which follows the de-afferentiation associated with nerve injury and repair. This early intervention can be done with the use of artificial sensibility the first post-operative day. According to this technique, based on sense substitution and utilising the multimodal capacity of the brain, miniature microphones on the fingertips of the asensible hand pick up the friction sound generated by active touch. The vibro-tactile signals are stereophonically transposed to vibro-acoustic signals, thereby providing an alternate feed-back which hypothetically helps to maintain or re-establish the cortical hand map.

References

  • 1 Allan C H. Functional results of primary nerve repair.  Hand Clin. 2000;  16 67-72
  • 2 Almquist E E, Smith O A, Fry L. Nerve conduction velocity, microscopic, and electron microscopy studies comparing repaired adult and baby monkey median nerves.  J Hand Surg. 1983;  8 404-410
  • 3 Bevelier D, Neville H. Cross-modal plasticity: Where and how?.  Nat Neurosci. 2002;  3 443-452
  • 4 Birch R, Raji A. Repair of median and ulnar nerves - primary suture is best.  J Bone Joint Surg [Br]. 1991;  73 154-157
  • 5 Borsook D, Becerra L, Fishman S, Edwards A, Jennings C, Stojanovic M. et al . Acute plasticity in the human somatosensory cortex following amputation.  Neuro Report. 1998;  9 1013-1017
  • 6 Callahan A D. Methods of compensation and reeducation for sensory dysfunction. Hunter JM, Mackin EJ, Callahan AD Rehabilitation of the Hand. St Louis; C. V. Mosby 1995: 701-714
  • 7 Chen R, Cohen L G, Hallett M. Nervous system reorganization following injury.  Neuroscience. 2002;  111 761-773
  • 8 Daniele H R, Aguado L. Early compensatory sensory re-education.  J Reconstr Microsurg. 2003;  19 107-110
  • 9 Dellon A. Somatosensory Testing and Rehabilitation. Bethseda; The American Occupational Therapy Association, Inc. 1997
  • 10 Dellon A L. Sensibility and Re-education of Sensation in the Hand. Baltimore; Williams & Wilkins 1981
  • 11 Dellon A L, Curtis R M, Edgerton M T. Re-education of sensation in the hand after nerve injury and repair.  Plastic Reconstruct Surg. 1974;  53 297-305
  • 12 Elbert T, Candia E, Altenmüller E, Rau H, Sterr A, Rockstroh B. et al . Alteration of digital representations in somatosensory cortex in focal hand dystonia.  Neuro Report. 1998;  9 3571-3575
  • 13 Florence S L, Boydston L A, Hackett T A, Lachoff H T, Strata F, Niblock M M. Sensory enrichment after peripheral nerve injury restores cortical, not thalamic, receptive field organization.  Eur J Neurosci. 2001;  13 1755-1766
  • 14 Florence S L, Jain N, Pospichal M W, Beck P D, Sly D L, Kaas J H. Central reorganization of sensory pathways following peripheral nerve regeneration in fetal monkeys.  Nature. 1996;  381 69-71
  • 15 Gelder B. More to seeing than meets the eye.  Science. 2000;  289 1148-1149
  • 16 Godde B, Ehrhardt J, Braun C. Behavioral significance of input-dependent plasticity of human somatosensory cortex.  Neuroreport. 2003;  14 543-546
  • 17 Jenkins W M, Merzenich M M, Ochs M T, Allard T, Guic-Robles E. Functional reorganization of primary somatosensory cortex in adult owl monkeys after behaviorally controlled tactile stimulation.  J Neurophysiol. 1990;  63 82-104
  • 18 Jerosch-Herold C. Measuring outcome in median nerve injuries.  J Hand Surg [Br]. 1993;  18 624-628
  • 19 Johansson R S. Sensory and memory information in the control of dexterous manipulation. Lacquaniti F, Viviani P Neural Bases of Motor Behaviour. The Netherlands; Kluwer Academic Publishers 1996: 205-260
  • 20 Kallio P K, Vastamäki M. An analysis of the results of late reconstruction of 132 median nerves.  J Hand Surg [Br]. 1993;  18 97-105
  • 21 Katz D. The World of Touch. London; Lawrence Erlbaum Associates 1989
  • 22 Klatsky R L, Lederman S, Reed C. There's more to touch than meets the eye: The salience of object attributes for haptics with and without vision.  J Exp Psych General. 1987;  116 356-369
  • 23 Levy L M, Ziemann U, Chen R, Cohen L G. Rapid modulation of GABA in sensorimotor cortex induced by acute deafferentation.  Ann Neurol. 2002;  52 755-761
  • 24 Lundborg G, Rosén B. Enhanced sensory recovery after median nerve repair: effects of early postoperative artificial sensibility using the sensor glove system.  J Hand Surg [Br]. 2003;  28 (Suppl) 38-39
  • 25 Lundborg G. Brain plasticity and hand surgery: An overview.  J Hand Surg [Br]. 2000;  25 242-252
  • 26 Lundborg G. Nerve Injury and Repair. Edinburgh; Churchill Livingstone 1988
  • 27 Lundborg G, Rosén B. Sensory relearning after nerve repair.  Lancet. 2001;  358 809-810
  • 28 Lundborg G, Rosén B, Lindberg S. Hearing as substitution for sensation - a new principle for artificial sensibility.  J Hand Surg [Am]. 1999;  24 219-224
  • 29 Macaluso E, Frith C D, Driver J. Modulation of human visual cortex by crossmodal spatial attention.  Science. 2000;  289 1206-1208
  • 30 Marks L. Similarities and differences among the senses.  Intern J Neuroscience. 1983;  19 1-12
  • 31 McAllister R, Calder J. Paradoxical clinical consequences of peripheral nerve injury: a review of anatomical, neurophysiological and psychological mechanisms.  Br J Plast Surg. 1995;  48 384-395
  • 32 Merzenich M M, Jenkins W M. Reorganization of cortical representations of the hand following alterations of skin inputs induced by nerve injury, skin island transfers, and experience.  J Hand Ther. 1993;  6 89-104
  • 33 Merzenich M M, Kaas J H, Wall R J, Nelson M, Sur D, Felleman D. Topographic reorganization of somatosensory cortical areas 3 B and 1 in adult monkeys following restricted deafferentation.  Neuroscience. 1983;  8 33-55
  • 34 Moberg E. Objective methods for determining the functional value of sensibility in the hand.  J Bone Joint Surg [Br]. 1958;  40 454-476
  • 35 Pantev C, Engelien A, Candia V, Elbert T. Representational cortex in musicians. Plastic alterations in response to musical practice.  Ann NY Acad Sci. 2001;  930 300-314
  • 36 Pascual-Leone A, Hamilton R. The metamodal organization of the brain.  Prog Brain Res. 2001;  134 427-445
  • 37 Penfield W, Boldrey E. Somatic motor and sensory representations in the cerebral cortex of man as studied by electrical stimulation.  Brain. 1937;  60 389-443
  • 38 Pons T, Preston E, Garraghty K. Massive cortical reorganization after sensory deafferentation in adult macaques.  Science. 1991;  252 1857-1860
  • 39 Qi H X, Stepniewska I, Kaas J H. Reorganization of primary motor cortex in adult macaque monkeys with long-standing amputations.  J Neurophysiol. 2000;  84 2133-2147
  • 40 Riso R. Strategies for providing upper extremity amputees with tactile and hand position feedback - moving closer to the bionic arm.  Technol Health Care. 1999;  7 401-409
  • 41 Rosén B, Balkenius C, Lundborg G. Sensory re-education today and tomorrow: a review of evolving concepts.  Brit J Hand Therapy. 2003;  8 48-56
  • 42 Rosén B, Lundborg G. Early use of artificial sensibility to improve sensory recovery after repair of the median and ulnar nerve.  Scand J Plast Reconstr Surg Hand Surg. 2003;  37 54-57
  • 43 Rossini P M, Martino G, Narici L, Pasquarelli A, Peresson M, Pizzela V. et al . Short-term brain plasticity in humans: transient finger representation changes in sensory cortex somatotopy following ischemic anesthesia.  Brain Res. 1994;  642 169-177
  • 44 Wall J T, Xu J, Wang X. Human brain plasticity: an emerging view of the multiple substrates and mechanisms that cause cortical changes and related sensory dysfunctions after injuries of sensory inputs from the body.  Brain Res Brain Res Rev. 2002;  39 181-215
  • 45 Weiss T, Miltner W, Huonker R, Friedel R, Schmidt I, Taub E. Rapid functional plasticity of the somatosensory cortex after finger amputation.  Exp Brain Res. 2000;  134 199-203
  • 46 Werhahn K J, Mortensen J, Van Boven R W, Zeuner K E, Cohen L G. Enhanced tactile spatial acuity and cortical processing during acute hand deafferentation.  Nat Neurosci. 2002;  5 936-938
  • 47 Wynn-Parry C B. Rehabilitation of the Hand. London; Butterworths 1966
  • 48 Wynn-Parry C B, Salter M. Sensory re-education after median nerve lesions.  Hand. 1976;  8 250-257

MSc, PhD Birgitta Rosén

Department of Hand Surgery
University Hospital MAS

20502 Malmö

Sweden

Email: birgitta.rosen@hand.mas.lu.se