Subscribe to RSS
DOI: 10.1055/s-2004-822380
Palladium-Catalyzed Silastannation of Secondary Propargylic Alcohols and their Derivatives
Publication History
Publication Date:
18 May 2004 (online)
Abstract
A series of terminal propargylic alcohols and their derivatives were subjected to Pd-catalyzed silastannation. In all reactions, complete regio- and stereoselectivities were observed with the tributyltin moiety exclusively adding to the internal carbon of the triple bond in a cis fashion, including the first example of a diyne bis-silastannation. Silastannation reaction products could sequentially be protiodesilylated or iododestannylated, thus providing synthetic routes to 1,1-gem-disubstituted alkenylstannanes and iodides, respectively.
Key words
palladium - catalysis - propargylic alcohols - silastannation - iododestannylation - Stille reaction
- 1 Review:
Beletskaya I.Moberg C. Chem. Rev. 1999, 99: 3435 - 2 For an overview, see:
Metal-Catalyzed Cross-Coupling Reactions
Diederich F.Stang PJ. Wiley-VCH; New York: 1998. - For selected reviews on the Stille reaction, consult:
-
3a
Stille JK. Angew Chem., Int. Ed. Engl. 1986, 25: 508 -
3b
Mitchell TN. Synthesis 1992, 803 -
3c
Farina V.Krishnamurthy V.Scott WJ. Org. React. 1998, 50: 1 -
3d
Duncton MAJ.Pattenden G. J. Chem. Soc., Perkin Trans. 1 1999, 1235 - For selected reviews on the Suzuki reaction, consult:
-
4a
Miyaura N.Suzuki A. Chem. Rev. 1995, 95: 2457 -
4b
Chemler SR.Trauner D.Danishefsky SJ. Angew. Chem. Int. Ed. 2001, 40: 4544 -
4c
Kotha S.Lahiri K.Kashinath D. Tetrahedron 2002, 58: 9633 - 5
Mitchell TN.Killing H.Dicke R.Wickenkamp R. J. Chem. Soc., Chem. Commun. 1985, 354 - 6
Chenard BL.Laganis ED.Davidson F.RajanBabu TV. J. Org. Chem. 1985, 50: 3666 - 7
Mitchell TN.Wickenkamp R.Amamria A.Dicke R.Schneider U. J. Org. Chem. 1987, 52: 4868 - 8
Murakami M.Morita Y.Ito Y. J. Chem. Soc., Chem. Commun. 1990, 428 - 9
Murakami M.Amii H.Takizawa N.Ito Y. Organometallics 1993, 12: 4223 - 10
Casson S.Kocienski P.Reid G.Smith N.Street JM.Webster M. Synthesis 1994, 1301 - 11
Minière S.Cintrat J.-C. Synthesis 2001, 705 - 12
Hada M.Tanaka Y.Ito M.Murakami M.Amii H.Ito Y.Nakatsuji H. J. Am. Chem. Soc. 1994, 116: 8754 - See for example:
-
13a
Colvin EW. Silicon in Organic Synthesis Butterworths; London: 1981. -
13b
Weber WP. Silicon Reagents for Organic Synthesis Springer-Verlag; New York: 1983. -
13c
The Chemistry of Silicon Compounds
Patai S.Rappoport Z. Wiley; Chichester: 1989. - See for example:
-
14a
Pereyre M.Quintard J.-P.Rahm A. Tin in Organic Synthesis Butterworths; London: 1987. -
14b
Chemistry of Tin
Smith PJ. Blackie Academic & Professional; New York: 1998. -
14c
Davies AG. Organotin Chemistry VCH; Weinheim: 1997. - 15
Chenard BL.Van Zyl CM. J. Org. Chem. 1986, 51: 3561 - For studies on Stille reactions of silastannation products, see:
-
16a
Chenard BL.Van Zyl CM.Sanderson DR. Tetrahedron Lett. 1986, 27: 2801 -
16b
Lunot S.Thibonnet J.Duchêne A.Parrain J.-L.Abarbri M. Tetrahedron Lett. 2000, 41: 8893 -
16c
Timbart L.Cintrant J.-C. Chem.-Eur. J. 2002, 8: 1637 - 17
Ikenaga K.Hiramatsu K.Nasaka N.Matsuto S. J. Org. Chem. 1993, 58: 5045 - 18
Midland MM. J. Org. Chem. 1975, 40: 2250 - 19 In subsequent experiments we noted that the catalyst loading could generally be reduced to amounts as low as 0.1% Pd, with only minor loss in product yield.
- 20 Review:
Smith ND.Mancuso J.Lautens M. Chem. Rev. 2000, 100: 3257 -
21a
Greeves N.Torode JS. Synlett 1994, 537 -
21b
Nielsen TE.Tanner D. J. Org. Chem. 2002, 67: 6366 - 22
Kazmaier U.Schauss D.Pohlman M. Org. Lett. 1999, 1: 1017 - 23
Ritter K. Synthesis 1989, 218 - For the first reports on Cu(I)-mediated Stille reactions, consult:
-
24a
Marino JP.Long JK. J. Am. Chem. Soc. 1988, 110: 7916 -
24b
Liebeskind LS.Fengl R. J. Org. Chem. 1990, 55: 5359 -
25a
Quayle P.Wang J.Xu J.Urch CJ. Tetrahedron Lett. 1998, 39: 489 -
25b
Flohr A. Tetrahedron Lett. 1998, 39: 5177 - 26
Han X.Stoltz BM.Corey EJ. J. Am. Chem. Soc. 1999, 121: 7600 - 27
Österlöf J. Acta Chim. Scand. 1950, 4: 374 - 29
Mortier J.Vaultier M.Carreaux F.Douin J. J. Org. Chem. 1998, 63: 3515 - 30
Henderson MA.Heathcock CH. J. Org. Chem. 1988, 53: 4736 - 31
Feldman KS.Bruendl MM.Schildknegt K.Bohnstedt AC. J. Org. Chem. 1996, 61: 5440 - 32
Darcel C.Bruneau C.Dixneuf PH.Roberts SM. Tetrahedron 1997, 53: 9241 - 33
Bernassau JM.Bertranne M.Collongues C.Fetizon M. Tetrahedron 1985, 41: 3063 - 34
Garratt DG.Beaulieu PL.Morisset VM. Can. J. Chem. 1981, 59: 927 - 35
Nash BW.Thomas DA.Warburton WK.Williams TD. J. Chem. Soc. 1965, 2983 - 37
Glaenzer BI.Faber K.Griengl H. Tetrahedron 1987, 43: 5791 - 38
Smulik JA.Diver ST. Org. Lett. 2000, 2: 2271 - 39
Mahrwald R.Quint S. Tetrahedron 2000, 56: 7463 - 40
Moorthy BK. J. Indian Chem. Soc. 1990, 67: 909
References
At 1 atm, 1 mole of ideal gas has a volume of approximately 23 L. Therefore, considering acetylene as an ideal gas, 1 L of acetylene should correspond to app. 43 mmol. This need not to be more accurate, as long as an excess of acetylene relative to BuLi is assured.
36Diyne 1j was prepared according to the general procedure with the modification that 25 mmol of ethyl benzoate was treated with 55 mmol of lithium acetylide.
41A satisfactory elemental analysis could not be obtained due to the presence of an inseparable amount (<5%) of dibenzylideneacetone (dba).