Semin Liver Dis 2004; 24(1): 77-88
DOI: 10.1055/s-2004-823102
Copyright © 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

An Update on the Molecular Genetics of Hepatocellular Carcinoma

Arief Suriawinata1 , Ruliang Xu2
  • 1Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
  • 2Assistant Professor, The Lillian and Henry M. Stratton-Hans Popper Department of Pathology, The Mount Sinai Medical Center, New York, New York
Further Information

Publication History

Publication Date:
13 April 2004 (online)

Hepatocellular carcinoma (HCC) is associated with multiple risk factors and is believed to arise from preneoplastic lesions, usually in the background of cirrhosis. Extensive studies on HCC and its precursors have demonstrated complex and heterogeneous genetic or chromosomal abnormalities along the way from preneoplastic lesions to HCCs. These genetic abnormalities include loss of heterozygosity, microsatellite instability, gene alterations, and aberrant global gene expression profiles. Although some genetic alterations involving the p53 family, Rb family, and Wnt pathways are particularly important in the development of HCCs, the molecular pathogenesis of HCC differs with etiology in some extent. Recent studies using DNA microarray technique have identified some unique gene expression profiles in hepatitis B virus (HBV)- and hepatitis C virus (HCV)-associated HCCs. Gene expression profiling also allows people to distinguish HCCs from normal tissue or preneoplastic lesions and to evaluate metastatic or recurrent potentials. These unique genes or gene products associated with malignant transformation and recurrent or metastatic potentials may serve as molecular markers for early diagnosis, prediction of prognosis, and responsiveness to therapy. To date, information that has accumulated for the past several decades is still incomplete, and we still are faced with a great challenge in deciphering the molecular mechanisms of HCCs.

REFERENCES

  • 1 El-Serag H B, Mason A C. Rising incidence of hepatocellular carcinoma in the United States.  N Engl J Med. 1999;  340 745-750
  • 2 Bosch F X, Ribes J, Borras J. Epidemiology of primary liver cancer.  Semin Liver Dis. 1999;  19 271-285
  • 3 Tsutsumi T, Suzuki T, Moriya K et al.. Alteration of intrahepatic cytokine expression and AP-1 activation in transgenic mice expressing hepatitis C virus core protein.  Virology. 2002;  304 415-424
  • 4 Durr R, Caselmann W H. Carcinogenesis of primary liver malignancies.  Langenbecks Arch Surg. 2000;  385 154-161
  • 5 El-Serag H B. Hepatocellular carcinoma and hepatitis C in the United States.  Hepatology. 2002;  36 S74-S83
  • 6 Sun M, Eshleman J R, Ferrell L D et al.. An early lesion in hepatic carcinogenesis: loss of heterozygosity in human cirrhotic livers and dysplastic nodules at the 1p36-p34 region.  Hepatology. 2001;  33 1415-1424
  • 7 Theise N D, Schwartz M, Miller C, Thung S N. Macroregenerative nodules and hepatocellular carcinoma in forty-four sequential adult liver explants with cirrhosis.  Hepatology. 1992;  16 949-955
  • 8 Orsatti G, Theise N D, Thung S N, Paronetto F. DNA image cytometric analysis of macroregenerative nodules (adenomatous hyperplasia) of the liver: evidence in support of their preneoplastic nature.  Hepatology. 1993;  17 621-627
  • 9 Takayama T, Makuuchi M, Hirohashi S et al.. Malignant transformation of adenomatous hyperplasia to hepatocellular carcinoma.  Lancet. 1990;  336 1150-1153
  • 10 Edamoto Y, Hara A, Biernat W et al.. Alterations of RB1, p53 and Wnt pathways in hepatocellular carcinomas associated with hepatitis C, hepatitis B and alcoholic liver cirrhosis.  Int J Cancer. 2003;  106 334-341
  • 11 Wang X W, Hussain S P, Huo T I et al.. Molecular pathogenesis of human hepatocellular carcinoma.  Toxicology. 2002;  181-182 43-47
  • 12 Koike K, Tsutsumi T, Fujie H et al.. Molecular mechanism of viral hepatocarcinogenesis.  Oncology. 2002;  62(Suppl 1) 29-37
  • 13 Kim J W, Wang X W. Gene expression profiling of preneoplastic liver disease and liver cancer: a new era for improved early detection and treatment of these deadly diseases?.  Carcinogenesis. 2003;  24 363-369
  • 14 Staib F, Hussain S P, Hofseth L J et al.. TP53 and liver carcinogenesis.  Hum Mutat. 2003;  21 201-216
  • 15 Paterlini-Brechot P, Vona G, Brechot C. Circulating tumorous cells in patients with hepatocellular carcinoma. Clinical impact and future directions.  Semin Cancer Biol. 2000;  10 241-249
  • 16 Gozuacik D, Murakami Y, Saigo K et al.. Identification of human cancer-related genes by naturally occurring Hepatitis B Virus DNA tagging.  Oncogene. 2001;  20 6233-6240
  • 17 Nakamoto Y, Guidotti L G, Kuhlen C V et al.. Immune pathogenesis of hepatocellular carcinoma.  J Exp Med. 1998;  188 341-350
  • 18 Chisari F V, Ferrari C. Hepatitis B virus immunopathology.  Springer Semin Immunopathol. 1995;  17 261-281
  • 19 Chisari F V, Filippi P, Buras J et al.. Structural and pathological effects of synthesis of hepatitis B virus large envelope polypeptide in transgenic mice.  Proc Natl Acad Sci USA. 1987;  84 6909-6913
  • 20 Murakami S. Hepatitis B virus X protein: a multifunctional viral regulator.  J Gastroenterol. 2001;  36 651-660
  • 21 Caselmann W H. Trans-activation of cellular genes by hepatitis B virus proteins: a possible mechanism of hepatocarcinogenesis.  Adv Virus Res. 1996;  47 253-302
  • 22 Qadri I, Maguire H F, Siddiqui A. Hepatitis B virus transactivator protein X interacts with the TATA-binding protein.  Proc Natl Acad Sci USA. 1995;  92 1003-1007
  • 23 Haviv I, Shamay M, Doitsh G, Shaul Y. Hepatitis B virus pX targets TFIIB in transcription coactivation.  Mol Cell Biol. 1998;  18 1562-1569
  • 24 Natoli G, Avantaggiati M L, Chirillo P et al.. Ras- and Raf-dependent activation of c-jun transcriptional activity by the hepatitis B virus transactivator pX.  Oncogene. 1994;  9 2837-2843
  • 25 Benn J, Schneider R J. Hepatitis B virus HBx protein activates Ras-GTP complex formation and establishes a Ras, Raf, MAP kinase signaling cascade.  Proc Natl Acad Sci USA. 1994;  91 10350-10354
  • 26 Su F, Schneider R J. Hepatitis B virus HBx protein activates transcription factor NF-kappaB by acting on multiple cytoplasmic inhibitors of rel-related proteins.  J Virol. 1996;  70 4558-4566
  • 27 Terradillos O, Billet O, Renard C A et al.. The hepatitis B virus X gene potentiates c-myc-induced liver oncogenesis in transgenic mice.  Oncogene. 1997;  14 395-404
  • 28 Chirillo P, Pagano S, Natoli G et al.. The hepatitis B virus X gene induces p53-mediated programmed cell death.  Proc Natl Acad Sci USA. 1997;  94 8162-8167
  • 29 Elmore L W, Hancock A R, Chang S F et al.. Hepatitis B virus X protein and p53 tumor suppressor interactions in the modulation of apoptosis.  Proc Natl Acad Sci USA. 1997;  94 14707-14712
  • 30 Hu Z, Zhang Z, Doo E et al.. Hepatitis B virus X protein is both a substrate and a potential inhibitor of the proteasome complex.  J Virol. 1999;  73 7231-7240
  • 31 Lee D K, Park S H, Yi Y et al.. The hepatitis B virus encoded oncoprotein pX amplifies TGF-beta family signaling through direct interaction with Smad4: potential mechanism of hepatitis B virus-induced liver fibrosis.  Genes Dev. 2001;  15 455-466
  • 32 Sirma H, Giannini C, Poussin K et al.. Hepatitis B virus X mutants, present in hepatocellular carcinoma tissue abrogate both the antiproliferative and transactivation effects of HBx.  Oncogene. 1999;  18 4848-4859
  • 33 Su Q, Schroder C H, Hofmann W J et al.. Expression of hepatitis B virus X protein in HBV-infected human livers and hepatocellular carcinomas.  Hepatology. 1998;  27 1109-1120
  • 34 Gottlob K, Pagano S, Levrero M, Graessmann A. Hepatitis B virus X protein transcription activation domains are neither required nor sufficient for cell transformation.  Cancer Res. 1998;  58 3566-3570
  • 35 Wu C G, Salvay D M, Forgues M et al.. Distinctive gene expression profiles associated with Hepatitis B virus x protein.  Oncogene. 2001;  20 3674-3682
  • 36 Wu C G, Forgues M, Siddique S et al.. SAGE transcript profiles of normal primary human hepatocytes expressing oncogenic hepatitis B virus X protein.  FASEB J. 2002;  16 1665-1667
  • 37 Kasai Y, Takeda S, Takagi H. Pathogenesis of hepatocellular carcinoma: a review from the viewpoint of molecular analysis.  Semin Surg Oncol. 1996;  12 155-159
  • 38 Chen C M, You L R, Hwang L H, Lee Y H. Direct interaction of hepatitis C virus core protein with the cellular lymphotoxin-beta receptor modulates the signal pathway of the lymphotoxin-beta receptor.  J Virol. 1997;  71 9417-9426
  • 39 Xu X R, Huang J, Xu Z G et al.. Insight into hepatocellular carcinogenesis at transcriptome level by comparing gene expression profiles of hepatocellular carcinoma with those of corresponding noncancerous liver.  Proc Natl Acad Sci USA. 2001;  98 15089-15094
  • 40 Block T M, Mehta A S, Fimmel C J, Jordan R. Molecular viral oncology of hepatocellular carcinoma.  Oncogene. 2003;  22 5093-5107
  • 41 Moriya K, Fujie H, Shintani Y et al.. The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice.  Nat Med. 1998;  4 1065-1067
  • 42 Gale Jr M, Blakely C M, Kwieciszewski B et al.. Control of PKR protein kinase by hepatitis C virus nonstructural 5A protein: molecular mechanisms of kinase regulation.  Mol Cell Biol. 1998;  18 5208-5218
  • 43 Kaufman R J. Double-stranded RNA-activated protein kinase mediates virus-induced apoptosis: a new role for an old actor.  Proc Natl Acad Sci USA. 1999;  96 11693-11695
  • 44 Gale Jr M, Kwieciszewski B, Dossett M et al.. Antiapoptotic and oncogenic potentials of hepatitis C virus are linked to interferon resistance by viral repression of the PKR protein kinase.  J Virol. 1999;  73 6506-6516
  • 45 Mottola G, Cardinali G, Ceccacci A et al.. Hepatitis C virus nonstructural proteins are localized in a modified endoplasmic reticulum of cells expressing viral subgenomic replicons.  Virology. 2002;  293 31-43
  • 46 Newberne P M. Chemical carcinogenesis: mycotoxins and other chemicals to which humans are exposed.  Semin Liver Dis. 1984;  4 122-135
  • 47 Henry S H, Bosch F X, Bowers J C. Aflatoxin, hepatitis and worldwide liver cancer risks.  Adv Exp Med Biol. 2002;  504 229-233
  • 48 Smela M E, Currier S S, Bailey E A, Essigmann J M. The chemistry and biology of aflatoxin B(1): from mutational spectrometry to carcinogenesis.  Carcinogenesis. 2001;  22 535-545
  • 49 Smela M E, Hamm M L, Henderson P T et al.. The aflatoxin B(1) formamidopyrimidine adduct plays a major role in causing the types of mutations observed in human hepatocellular carcinoma.  Proc Natl Acad Sci USA. 2002;  99 6655-6660
  • 50 Kress S, Jahn U R, Buchmann A et al.. p53 Mutations in human hepatocellular carcinomas from Germany.  Cancer Res. 1992;  52 3220-3223
  • 51 Ozturk M. p53 mutation in hepatocellular carcinoma after aflatoxin exposure.  Lancet. 1991;  338 1356-1359
  • 52 Aguilar F, Harris C C, Sun T et al.. Geographic variation of p53 mutational profile in nonmalignant human liver.  Science. 1994;  264 1317-1319
  • 53 Li Y, Su J J, Qin L L et al.. Synergistic effect of hepatitis B virus and aflatoxin B1 in hepatocarcinogenesis in tree shrews.  Ann Acad Med Singapore. 1999;  28 67-71
  • 54 Buss P, Caviezel M, Lutz W K. Linear dose-response relationship for DNA adducts in rat liver from chronic exposure to aflatoxin B1.  Carcinogenesis. 1990;  11 2133-2135
  • 55 Guengerich F P, Johnson W W, Ueng Y F et al.. Involvement of cytochrome P450, glutathione S-transferase, and epoxide hydrolase in the metabolism of aflatoxin B1 and relevance to risk of human liver cancer.  Environ Health Perspect. 1996;  104 (Suppl 3) 557-562
  • 56 Hussain S P, Raja K, Amstad P A et al.. Increased p53 mutation load in nontumorous human liver of wilson disease and hemochromatosis: oxyradical overload diseases.  Proc Natl Acad Sci USA. 2000;  97 12770-12775
  • 57 Niederau C, Fischer R, Sonnenberg A et al.. Survival and causes of death in cirrhotic and in noncirrhotic patients with primary hemochromatosis.  N Engl J Med. 1985;  313 1256-1262
  • 58 Deugnier Y, Turlin B. Iron and hepatocellular carcinoma.  J Gastroenterol Hepatol. 2001;  16 491-494
  • 59 Boige V, Castera L, de Roux N et al.. Lack of association between HFE gene mutations and hepatocellular carcinoma in patients with cirrhosis.  Gut. 2003;  52 1178-1181
  • 60 Cauza E, Peck-Radosavljevic M, Ulrich-Pur H et al.. Mutations of the HFE gene in patients with hepatocellular carcinoma.  Am J Gastroenterol. 2003;  98 442-447
  • 61 Vautier G, Bomford A B, Portmann B C et al.. p53 mutations in british patients with hepatocellular carcinoma: clustering in genetic hemochromatosis.  Gastroenterology. 1999;  117 154-160
  • 62 Narayanan V S, Fitch C A, Levenson C W. Tumor suppressor protein p53 mRNA and subcellular localization are altered by changes in cellular copper in human Hep G2 cells.  J Nutr. 2001;  131 1427-1432
  • 63 Wang Y, Wu M C, Sham J S et al.. Different expression of hepatitis B surface antigen between hepatocellular carcinoma and its surrounding liver tissue, studied using a tissue microarray.  J Pathol. 2002;  197 610-616
  • 64 Theise N D. Macroregenerative (dysplastic) nodules and hepatocarcinogenesis: theoretical and clinical considerations.  Semin Liver Dis. 1995;  15 360-371
  • 65 Hytiroglou P, Theise N D. Differential diagnosis of hepatocellular nodular lesions.  Semin Diagn Pathol. 1998;  15 285-299
  • 66 Thung S N, Hytiroglou P, Fiel I, Theise N. Preneoplastic lesions in chronic hepatitis C.  Princess Takamatsu Symp. 1995;  25 171-178
  • 67 Hytiroglou P, Theise N D, Schwartz M et al.. Macroregenerative nodules in a series of adult cirrhotic liver explants: issues of classification and nomenclature.  Hepatology. 1995;  21 703-708
  • 68 Aihara T, Noguchi S, Sasaki Y et al.. Clonal analysis of precancerous lesion of hepatocellular carcinoma.  Gastroenterology. 1996;  111 455-461
  • 69 Okuda T, Wakasa K, Kubo S et al.. Clonal analysis of hepatocellular carcinoma and dysplastic nodule by methylation pattern of X-chromosome-linked human androgen receptor gene.  Cancer Lett. 2001;  164 91-96
  • 70 Paradis V, Laurendeau I, Vidaud M, Bedossa P. Clonal analysis of macronodules in cirrhosis.  Hepatology. 1998;  28 953-958
  • 71 Terracciano L, Tornillo L. Cytogenetic alterations in liver cell tumors as detected by comparative genomic hybridization.  Pathologica. 2003;  95 71-82
  • 72 Riegler J L. Preneoplastic conditions of the liver.  Semin Gastrointest Dis. 1996;  7 74-87
  • 73 Thorgeirsson S S, Grisham J W. Molecular pathogenesis of human hepatocellular carcinoma.  Nat Genet. 2002;  31 339-346
  • 74 Paradis V, Dargere D, Bonvoust F et al.. Clonal analysis of micronodules in virus C-induced liver cirrhosis using laser capture microdissection (LCM) and HUMARA assay.  Lab Invest. 2000;  80 1553-1559
  • 75 Kanai Y, Ushijima S, Tsuda H et al.. Aberrant DNA methylation precedes loss of heterozygosity on chromosome 16 in chronic hepatitis and liver cirrhosis.  Cancer Lett. 2000;  148 73-80
  • 76 Lin C H, Hsieh S Y, Sheen I S et al.. Genome-wide hypomethylation in hepatocellular carcinogenesis.  Cancer Res. 2001;  61 4238-4243
  • 77 Shen L, Fang J, Qiu D et al.. Correlation between DNA methylation and pathological changes in human hepatocellular carcinoma.  Hepatogastroenterology. 1998;  45 1753-1759
  • 78 Shim Y H, Yoon G S, Choi H J et al.. p16 Hypermethylation in the early stage of hepatitis B virus-associated hepatocarcinogenesis.  Cancer Lett. 2003;  190 213-219
  • 79 Saito Y, Kanai Y, Sakamoto M et al.. Expression of mRNA for DNA methyltransferases and methyl-CpG-binding proteins and DNA methylation status on CpG islands and pericentromeric satellite regions during human hepatocarcinogenesis.  Hepatology. 2001;  33 561-568
  • 80 Karachristos A, Liloglou T, Field J K et al.. Microsatellite instability and p53 mutations in hepatocellular carcinoma.  Mol Cell Biol Res Commun. 1999;  2 155-161
  • 81 Piao Z, Kim H, Malkhosyan S, Park C. Frequent chromosomal instability but no microsatellite instability in hepatocellular carcinomas.  Int J Oncol. 2000;  17 507-512
  • 82 Nishida N, Nishimura T, Ito T et al.. Chromosomal instability and human hepatocarcinogenesis.  Histol Histopathol. 2003;  18 897-909
  • 83 Nagai H, Emi M, Terada Y et al.. DNA alterations during multi-step development of human hepatocellular carcinomas revealed by laser capture microdissection.  Hepatol Res. 2003;  26 199-208
  • 84 Kahng Y S, Lee Y S, Kim B K et al.. Loss of heterozygosity of chromosome 8p and 11p in the dysplastic nodule and hepatocellular carcinoma.  J Gastroenterol Hepatol. 2003;  18 430-436
  • 85 Maggioni M, Coggi G, Cassani B et al.. Molecular changes in hepatocellular dysplastic nodules on microdissected liver biopsies.  Hepatology. 2000;  32 942-946
  • 86 Anders R A, Yerian L M, Tretiakova M et al.. cDNA microarray analysis of macroregenerative and dysplastic nodules in end-stage hepatitis C virus-induced cirrhosis.  Am J Pathol. 2003;  162 991-1000
  • 87 Kim J W, Sime J, Forgues M et al.. Molecular characterization of preneoplastic liver diseases by cDNA microarray. 93rd meeting of the American Association for Cancer Research, April 6-10, 2002, San Francisco, CA. Proc Am Assoc Cancer Res 2002 43: 461-462
  • 88 Roncalli M, Bianchi P, Grimaldi G C et al.. Fractional allelic loss in non-end-stage cirrhosis: correlations with hepatocellular carcinoma development during follow-up.  Hepatology. 2000;  31 846-850
  • 89 Wilkens L, Bredt M, Flemming P et al.. Comparative genomic hybridization (CGH) and fluorescence in situ hybridization (FISH) in the diagnosis of hepatocellular carcinoma.  J Hepatobiliary Pancreat Surg. 2002;  9 304-311
  • 90 Simon D, Knowles B B, Weith A. Abnormalities of chromosome 1 and loss of heterozygosity on 1p in primary hepatomas.  Oncogene. 1991;  6 765-770
  • 91 Wilkens L, Bredt M, Flemming A et al.. Detection of chromosomal aberrations in well-differentiated hepatocellular carcinoma by bright-field in situ hybridization.  Mod Pathol. 2002;  15 470-475
  • 92 Buendia M A. Genetics of hepatocellular carcinoma.  Semin Cancer Biol. 2000;  10 185-200
  • 93 Nagai H, Pineau P, Tiollais P et al.. Comprehensive allelotyping of human hepatocellular carcinoma.  Oncogene. 1997;  14 2927-2933
  • 94 Buendia M A. Genetic alterations in hepatoblastoma and hepatocellular carcinoma: common and distinctive aspects.  Med Pediatr Oncol. 2002;  39 530-535
  • 95 Oka Y, Waterland R A, Killian J K et al.. M6P/IGF2R tumor suppressor gene mutated in hepatocellular carcinomas in Japan.  Hepatology. 2002;  35 1153-1163
  • 96 Nishimura T, Nishida N, Itoh T et al.. Comprehensive allelotyping of well-differentiated human hepatocellular carcinoma with semiquantitative determination of chromosomal gain or loss.  Genes Chromosomes Cancer. 2002;  35 329-339
  • 97 De Souza A T, Hankins G R, Washington M K et al.. M6P/IGF2R gene is mutated in human hepatocellular carcinomas with loss of heterozygosity.  Nat Genet. 1995;  11 447-449
  • 98 Murakami Y, Hayashi K, Hirohashi S, Sekiya T. Aberrations of the tumor suppressor p53 and retinoblastoma genes in human hepatocellular carcinomas.  Cancer Res. 1991;  51 5520-5525
  • 99 Satoh S, Daigo Y, Furukawa Y et al.. AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1.  Nat Genet. 2000;  24 245-250
  • 100 Kuroki T, Fujiwara Y, Tsuchiya E et al.. Accumulation of genetic changes during development and progression of hepatocellular carcinoma: loss of heterozygosity of chromosome arm 1p occurs at an early stage of hepatocarcinogenesis.  Genes Chromosomes Cancer. 1995;  13 163-167
  • 101 Lin Y W, Sheu J C, Huang G T et al.. Chromosomal abnormality in hepatocellular carcinoma by comparative genomic hybridisation in Taiwan.  Eur J Cancer. 1999;  35 652-658
  • 102 Tamura S, Nakamori S, Kuroki T et al.. Association of cumulative allelic losses with tumor aggressiveness in hepatocellular carcinoma.  J Hepatol. 1997;  27 669-676
  • 103 Guan X Y, Fang Y, Sham J et al.. Recurrent chromosome alterations in hepatocellular carcinoma detected by comparative genomic hybridization.  Genes Chromosomes Cancer. 2001;  30 110-116
  • 104 Chang J, Kim N G, Piao Z et al.. Assessment of chromosomal losses and gains in hepatocellular carcinoma.  Cancer Lett. 2002;  182 193-202
  • 105 Chen Y J, Yeh S H, Chen J T et al.. Chromosomal changes and clonality relationship between primary and recurrent hepatocellular carcinoma.  Gastroenterology. 2000;  119 431-440
  • 106 Zhang L H, Qin L X, Ma Z C et al.. Allelic imbalance regions on chromosomes 8p, 17p and 19p related to metastasis of hepatocellular carcinoma: comparison between matched primary and metastatic lesions in 22 patients by genome-wide microsatellite analysis.  J Cancer Res Clin Oncol. 2003;  129 279-286
  • 107 Wilkens L, Bredt M, Flemming P et al.. Differentiation of multicentric origin from intra-organ metastatic spread of hepatocellular carcinomas by comparative genomic hybridization.  J Pathol. 2000;  192 43-51
  • 108 Kusano N, Shiraishi K, Kubo K et al.. Genetic aberrations detected by comparative genomic hybridization in hepatocellular carcinomas: their relationship to clinicopathological features.  Hepatology. 1999;  29 1858-1862
  • 109 Marchio A, Pineau P, Meddeb M et al.. Distinct chromosomal abnormality pattern in primary liver cancer of non-B, non-C patients.  Oncogene. 2000;  19 3733-3738
  • 110 Huang X H, Sun L H, Lu D D et al.. Codon 249 mutation in exon 7 of p53 gene in plasma DNA: maybe a new early diagnostic marker of hepatocellular carcinoma in Qidong risk area, China.  World J Gastroenterol. 2003;  9 692-695
  • 111 Kirk G D, Camus-Randon A M, Mendy M et al.. Ser-249 p53 mutations in plasma DNA of patients with hepatocellular carcinoma from The Gambia.  J Natl Cancer Inst. 2000;  92 148-153
  • 112 Chung T W, Lee Y C, Ko J H, Kim C H. Hepatitis B virus X protein modulates the expression of PTEN by inhibiting the function of p53, a transcriptional activator in liver cells.  Cancer Res. 2003;  63 3453-3458
  • 113 Hsia C C, Di Bisceglie A M, Kleiner Jr D E et al.. RB tumor suppressor gene expression in hepatocellular carcinomas from patients infected with the hepatitis B virus.  J Med Virol. 1994;  44 67-73
  • 114 Matsuda Y, Ichida T, Genda T et al.. Loss of p16 contributes to p27 sequestration by cyclin D(1)-cyclin-dependent kinase 4 complexes and poor prognosis in hepatocellular carcinoma.  Clin Cancer Res. 2003;  9 3389-3396
  • 115 Ng I O, Liang Z D, Cao L, Lee T K. DLC-1 is deleted in primary hepatocellular carcinoma and exerts inhibitory effects on the proliferation of hepatoma cell lines with deleted DLC-1.  Cancer Res. 2000;  60 6581-6584
  • 116 Wong I H, Lo Y M, Yeo W et al.. Frequent p15 promoter methylation in tumor and peripheral blood from hepatocellular carcinoma patients.  Clin Cancer Res. 2000;  6 3516-3521
  • 117 Yoshikawa H, Matsubara K, Qian G S et al.. SOCS-1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth-suppression activity.  Nat Genet. 2001;  28 29-35
  • 118 Tchou J C, Lin X, Freije D et al.. GSTP1 CpG island DNA hypermethylation in hepatocellular carcinomas.  Int J Oncol. 2000;  16 663-676
  • 119 Yang B, Guo M, Herman J G, Clark D P. Aberrant promoter methylation profiles of tumor suppressor genes in hepatocellular carcinoma.  Am J Pathol. 2003;  163 1101-1107
  • 120 Debuire B, Paterlini P, Pontisso P et al.. Analysis of the p53 gene in European hepatocellular carcinomas and hepatoblastomas.  Oncogene. 1993;  8 2303-2306
  • 121 Lin Y, Shi C Y, Li B et al.. Tumour suppressor p53 and Rb genes in human hepatocellular carcinoma.  Ann Acad Med Singapore. 1996;  25 22-30
  • 122 Teramoto T, Satonaka K, Kitazawa S et al.. p53 gene abnormalities are closely related to hepatoviral infections and occur at a late stage of hepatocarcinogenesis.  Cancer Res. 1994;  54 231-235
  • 123 Oda T, Tsuda H, Sakamoto M, Hirohashi S. Different mutations of the p53 gene in nodule-in-nodule hepatocellular carcinoma as a evidence for multistage progression.  Cancer Lett. 1994;  83 197-200
  • 124 Tanaka S, Toh Y, Adachi E et al.. Tumor progression in hepatocellular carcinoma may be mediated by p53 mutation.  Cancer Res. 1993;  53 2884-2887
  • 125 Sheen I S, Jeng K S, Wu J Y. Is p53 gene mutation an indicatior of the biological behaviors of recurrence of hepatocellular carcinoma?.  World J Gastroenterol. 2003;  9 1202-1207
  • 126 Jeng K S, Sheen I S, Chen B F, Wu J Y. Is the p53 gene mutation of prognostic value in hepatocellular carcinoma after resection?.  Arch Surg. 2000;  135 1329-1333
  • 127 Terradillos O, Pollicino T, Lecoeur H et al.. p53-independent apoptotic effects of the hepatitis B virus HBx protein in vivo and in vitro.  Oncogene. 1998;  17 2115-2123
  • 128 Chen G G, Merchant J L, Lai P B et al.. Mutation of p53 in recurrent hepatocellular carcinoma and its association with the expression of ZBP-89.  Am J Pathol. 2003;  162 1823-1829
  • 129 Kuroki T, Fujiwara Y, Nakamori S et al.. Evidence for the presence of two tumour-suppressor genes for hepatocellular carcinoma on chromosome 13q.  Br J Cancer. 1995;  72 383-385
  • 130 Zhang X, Xu H J, Murakami Y et al.. Deletions of chromosome 13q, mutations in Retinoblastoma 1, and retinoblastoma protein state in human hepatocellular carcinoma.  Cancer Res. 1994;  54 4177-4182
  • 131 Hui A M, Sakamoto M, Kanai Y et al.. Inactivation of p16INK4 in hepatocellular carcinoma.  Hepatology. 1996;  24 575-579
  • 132 Jin M, Piao Z, Kim N G et al.. p16 is a major inactivation target in hepatocellular carcinoma.  Cancer. 2000;  89 60-68
  • 133 Liew C T, Li H M, Lo K W et al.. High frequency of p16INK4A gene alterations in hepatocellular carcinoma.  Oncogene. 1999;  18 789-795
  • 134 Hsu H C, Jeng Y M, Mao T L et al.. Beta-catenin mutations are associated with a subset of low-stage hepatocellular carcinoma negative for hepatitis B virus and with favorable prognosis.  Am J Pathol. 2000;  157 763-770
  • 135 Mao T L, Chu J S, Jeng Y M et al.. Expression of mutant nuclear beta-catenin correlates with non-invasive hepatocellular carcinoma, absence of portal vein spread, and good prognosis.  J Pathol. 2001;  193 95-101
  • 136 Terris B, Pineau P, Bregeaud L et al.. Close correlation between beta-catenin gene alterations and nuclear accumulation of the protein in human hepatocellular carcinomas.  Oncogene. 1999;  18 6583-6588
  • 137 Wong C M, Fan S T, Ng I O. beta-Catenin mutation and overexpression in hepatocellular carcinoma: clinicopathologic and prognostic significance.  Cancer. 2001;  92 136-145
  • 138 Nhieu J T, Renard C A, Wei Y et al.. Nuclear accumulation of mutated beta-catenin in hepatocellular carcinoma is associated with increased cell proliferation.  Am J Pathol. 1999;  155 703-710
  • 139 Kondo Y, Kanai Y, Sakamoto M et al.. Genetic instability and aberrant DNA methylation in chronic hepatitis and cirrhosis-A comprehensive study of loss of heterozygosity and microsatellite instability at 39 loci and DNA hypermethylation on 8 CpG islands in microdissected specimens from patients with hepatocellular carcinoma.  Hepatology. 2000;  32 970-979
  • 140 Yamamoto H, Itoh F, Fukushima H et al.. Infrequent widespread microsatellite instability in hepatocellular carcinomas.  Int J Oncol. 2000;  16 543-547
  • 141 Arcellana-Panlilio M, Robbins S M. Cutting-edge technology. I. Global gene expression profiling using DNA microarrays.  Am J Physiol Gastrointest Liver Physiol. 2002;  282 G397-G402
  • 142 Chung E J, Sung Y K, Farooq M et al.. Gene expression profile analysis in human hepatocellular carcinoma by cDNA microarray.  Mol Cells. 2002;  14 382-387
  • 143 Lau W Y, Lai P B, Leung M F et al.. Differential gene expression of hepatocellular carcinoma using cDNA microarray analysis.  Oncol Res. 2000;  12 59-69
  • 144 Li Y, Tang R, Xu H et al.. Discovery and analysis of hepatocellular carcinoma genes using cDNA microarrays.  J Cancer Res Clin Oncol. 2002;  128 369-379
  • 145 Smith M W, Yue Z N, Geiss G K et al.. Identification of novel tumor markers in hepatitis C virus-associated hepatocellular carcinoma.  Cancer Res. 2003;  63 859-864
  • 146 Cheung S T, Chen X, Guan X Y et al.. Identify metastasis-associated genes in hepatocellular carcinoma through clonality delineation for multinodular tumor.  Cancer Res. 2002;  62 4711-4721
  • 147 Shirota Y, Kaneko S, Honda M et al.. Identification of differentially expressed genes in hepatocellular carcinoma with cDNA microarrays.  Hepatology. 2001;  33 832-840
  • 148 Okabe H, Satoh S, Kato T et al.. Genome-wide analysis of gene expression in human hepatocellular carcinomas using cDNA microarray: identification of genes involved in viral carcinogenesis and tumor progression.  Cancer Res. 2001;  61 2129-2137
  • 149 Kondoh N, Wakatsuki T, Hada A et al.. Genetic and epigenetic events in human hepatocarcinogenesis.  Int J Oncol. 2001;  18 1271-1278
  • 150 Kondoh N, Shuda M, Tanaka K et al.. Enhanced expression of S8, L12, L23a, L27 and L30 ribosomal protein mRNAs in human hepatocellular carcinoma.  Anticancer Res. 2001;  21 2429-2433
  • 151 Yamashita T, Kaneko S, Hashimoto S et al.. Serial analysis of gene expression in chronic hepatitis C and hepatocellular carcinoma.  Biochem Biophys Res Commun. 2001;  282 647-654
  • 152 Li Y, Tang Y, Ye L et al.. Establishment of a hepatocellular carcinoma cell line with unique metastatic characteristics through in vivo selection and screening for metastasis-related genes through cDNA microarray.  J Cancer Res Clin Oncol. 2003;  129 43-51
  • 153 Iizuka N, Oka M, Yamada-Okabe H et al.. Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection.  Lancet. 2003;  361 923-929

Ruliang XuM.D. Ph.D. 

The Mount Sinai Medical Center

The Lillian and Henry M. Stratton-Hans Popper Department of Pathology, One Gustave L. Levy Place, New York, NY 10029

Email: ruliang.xu@msnyuhealth.org