Semin Thromb Hemost 2004; 30(2): 173-183
DOI: 10.1055/s-2004-825631
Copyright © 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Preclinical Gene Therapy Studies for Hemophilia Using Adenoviral Vectors

Lieven Thorrez1 , Thierry VandenDriessche1 , Désiré Collen1 , Marinee K. L. Chuah1 , 2
  • 1Center for Transgene Technology and Gene Therapy, University of Leuven, Flanders Interuniversity Institute for Biotechnology (VIB), University Hospital Gasthuisberg, Leuven, Belgium
  • 2Professor, Center for Transgene Technology and Gene Therapy, University of Leuven, Flanders Interuniversity Institute for Biotechnology (VIB), University Hospital Gasthuisberg, Leuven, Belgium
Further Information

Publication History

Publication Date:
07 May 2004 (online)

Hemophilia A and B are hereditary coagulation defects resulting from a deficiency of factor VIII (FVIII) and factor IX (FIX), respectively. Introducing a functional FVIII or FIX gene could potentially provide a cure for these bleeding disorders. Adenoviral vectors have been used as tools to introduce potentially therapeutic genes into mammalian cells and are by far the most efficient vectors for hepatic gene delivery. Long-term expression of both FVIII and FIX has been achieved in preclinical (hemophilic) mouse models using adenoviral vectors. Therapeutic levels of FVIII and FIX also have been achieved in hemophilic dogs using adenoviral vectors and in some cases expression was long-term. The performance of earlier generation adenoviral vectors, which retained residual viral genes, was compromised by potent acute and chronic inflammatory responses that contributed to significant toxicity and morbidity and short-term expression of FVIII and FIX. The development of improved adenoviral vectors devoid of viral genes (gutless or high-capacity adenoviral vectors) was therefore warranted, which led to a significant reduction in acute and chronic toxicity and more prolonged expression of FVIII and FIX. Strategies aimed at making these vectors safer and less immunogenic and their implications for hemophilia gene therapy are discussed in this review.

REFERENCES

  • 1 Kaufman R J. Advances toward gene therapy for hemophilia at the millennium.  Hum Gene Ther. 1999;  10 2091-2107
  • 2 Hollestelle M J, Thinnes T, Crain K et al.. Tissue distribution of factor VIII gene expression in vivo-a closer look.  Thromb Haemost. 2001;  86 855-861
  • 3 Yee T T, Cohen B J, Pasi K J, Lee C A. Transmission of symptomatic parvovirus B19 infection by clotting factor concentrate.  Br J Haematol. 1996;  93 457-459
  • 4 Teitel J M. Viral safety of haemophilia treatment products.  Ann Med. 2000;  32 485-492
  • 5 Evatt B. Creutzfeldt-Jakob disease and haemophilia: assessment of risk.  Haemophilia. 2000;  6(suppl 1) 94-99
  • 6 Lofqvist T, Nilsson I M, Berntorp E, Pettersson H. Haemophilia prophylaxis in young patients-a long-term follow-up.  J Intern Med. 1997;  241 395-400
  • 7 Bi L, Lawler A M, Antonarakis S E et al.. Targeted disruption of the mouse factor VIII gene produces a model of haemophilia A.  Nat Genet. 1995;  10 119-121
  • 8 Bi L, Sarkar R, Naas T et al.. Further characterization of factor VIII-deficient mice created by gene targeting: RNA and protein studies.  Blood. 1996;  88 3446-3450
  • 9 Wang L, Zoppe M, Hackeng T M et al.. A factor IX-deficient mouse model for hemophilia B gene therapy.  Proc Natl Acad Sci USA. 1997;  94 11563-11566
  • 10 Kundu R K, Sangiorgi F, Wu L Y et al.. Targeted inactivation of the coagulation factor IX gene causes hemophilia B in mice.  Blood. 1998;  92 168-174
  • 11 Giles A R, Tinlin S, Hoogendoorn H, Greenwood P, Greenwood R. Development of factor VIII:C antibodies in dogs with hemophilia A (factor VIII:C deficiency).  Blood. 1984;  63 451-456
  • 12 Evans J P, Brinkhous K M, Brayer G D, Reisner H M, High K A. Canine hemophilia B resulting from a point mutation with unusual consequences.  Proc Natl Acad Sci USA. 1989;  86 10095-10099
  • 13 Bergelson J M, Cunningham J A, Droguett G et al.. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5.  Science. 1997;  275 1320-1323
  • 14 Kozarsky K F, Wilson J M. Gene therapy: adenovirus vectors.  Curr Opin Genet Dev. 1993;  3 499-503
  • 15 Krougliak V, Graham F L. Development of cell lines capable of complementing E1, E4, and protein IX defective adenovirus type 5 mutants.  Hum Gene Ther. 1995;  6 1575-1586
  • 16 Berkner K L. Development of adenovirus vectors for the expression of heterologous genes.  Biotechniques. 1988;  6 616-629
  • 17 Connelly S, Mount J, Mauser A et al.. Complete short-term correction of canine hemophilia A by in vivo gene therapy.  Blood. 1996;  88 3846-3853
  • 18 Lozier J N, Metzger M E, Donahue R E, Morgan R A. Adenovirus-mediated expression of human coagulation factor IX in the rhesus macaque is associated with dose-limiting toxicity.  Blood. 1999;  94 3968-3975
  • 19 National Institutes of Health Recombinant DNA Advisory Committee . Assessment of adenoviral vector safety and toxicity.  Hum Gene Ther. 2002;  13 3-13
  • 20 Armentano D, Sookdeo C C, Hehir K M et al.. Characterization of an adenovirus gene transfer vector containing an E4 deletion.  Hum Gene Ther. 1995;  6 1343-1353
  • 21 Wang Q, Jia X C, Finer M H. A packaging cell line for propagation of recombinant adenovirus vectors containing two lethal gene-region deletions.  Gene Ther. 1995;  2 775-783
  • 22 Gao G P, Yang Y, Wilson J M. Biology of adenovirus vectors with E1 and E4 deletions for liver-directed gene therapy.  J Virol. 1996;  70 8934-8943
  • 23 Yeh P, Dedieu J F, Orsini C et al.. Efficient dual transcomplementation of adenovirus E1 and E4 regions from a 293-derived cell line expressing a minimal E4 functional unit.  J Virol. 1996;  70 559-565
  • 24 Morral N, O'Neal W, Zhou H, Langston C, Beaudet A. Immune responses to reporter proteins and high viral dose limit duration of expression with adenoviral vectors: comparison of E2a wild type and E2a deleted vectors.  Hum Gene Ther. 1997;  8 1275-1286
  • 25 Fang B, Wang H, Gordon G et al.. Lack of persistence of E1-recombinant adenoviral vectors containing a temperature-sensitive E2A mutation in immunocompetent mice and hemophilia B dogs.  Gene Ther. 1996;  3 217-222
  • 26 Gorziglia M I, Kadan M J, Yei S et al.. Elimination of both E1 and E2 from adenovirus vectors further improves prospects for in vivo human gene therapy.  J Virol. 1996;  70 4173-4178
  • 27 Ye X, Gao G P, Pabin C, Raper S E, Wilson J M. Evaluating the potential of germ line transmission after intravenous administration of recombinant adenovirus in the C3H mouse.  Hum Gene Ther. 1998;  9 2135-2142
  • 28 Lusky M, Christ M, Rittner K et al.. In vitro and in vivo biology of recombinant adenovirus vectors with E1, E1/E2A, or E1/E4 deleted.  J Virol. 1998;  72 2022-2032
  • 29 Andrews J L, Kadan M J, Gorziglia M I, Kaleko M, Connelly S. Generation and characterization of E1/E2a/E3/E4-deficient adenoviral vectors encoding human factor VIII.  Mol Ther. 2001;  3 329-336
  • 30 Lynch C M, Israel D I, Kaufman R J, Miller A D. Sequences in the coding region of clotting factor VIII act as dominant inhibitors of RNA accumulation and protein production.  Hum Gene Ther. 1993;  4 259-272
  • 31 Hoeben R C, Fallaux F J, Cramer S J et al.. Expression of the blood-clotting factor-VIII cDNA is repressed by a transcriptional silencer located in its coding region.  Blood. 1995;  85 2447-2454
  • 32 Kaufman R J, Wasley L C, Dorner A J. Synthesis, processing, and secretion of recombinant human factor VIII expressed in mammalian cells.  J Biol Chem. 1988;  263 6352-6362
  • 33 Connelly S, Smith T A, Dhir G et al.. In vivo gene delivery and expression of physiological levels of functional human factor VIII in mice.  Hum Gene Ther. 1995;  6 185-193
  • 34 Connelly S, Gardner J M, McClelland A, Kaleko M. High-level tissue-specific expression of functional human factor VIII in mice.  Hum Gene Ther. 1996;  7 183-195
  • 35 Connelly S, Gardner J M, Lyons R M, McClelland A, Kaleko M. Sustained expression of therapeutic levels of human factor VIII in mice.  Blood. 1996;  87 4671-4677
  • 36 Connelly S, Andrews J L, Gallo A M et al.. Sustained phenotypic correction of murine hemophilia A by in vivo gene therapy.  Blood. 1998;  91 3273-3281
  • 37 Connelly S, Andrews J L, Gallo-Penn A M et al.. Evaluation of an adenoviral vector encoding full-length human factor VIII in hemophiliac mice.  Thromb Haemost. 1999;  81 234-239
  • 38 Gallo-Penn A M, Shirley P S, Andrews J L et al.. In vivo evaluation of an adenoviral vector encoding canine factor VIII: high-level, sustained expression in hemophiliac mice.  Hum Gene Ther. 1999;  10 1791-1802
  • 39 Gallo-Penn A M, Shirley P S, Andrews J L et al.. Systemic delivery of an adenoviral vector encoding canine factor VIII results in short-term phenotypic correction, inhibitor development, and biphasic liver toxicity in hemophilia A dogs.  Blood. 2001;  97 107-113
  • 40 Sarkar R, Gao G P, Chirmule N, Tazelaar J, Kazazian Jr H H. Partial correction of murine hemophilia A with neo-antigenic murine factor VIII.  Hum Gene Ther. 2000;  11 881-894
  • 41 Lipshutz G S, Sarkar R, Flebbe-Rehwaldt L, Kazazian H, Gaensler K M. Short-term correction of factor VIII deficiency in a murine model of hemophilia A after delivery of adenovirus murine factor VIII in utero.  Proc Natl Acad Sci USA. 1999;  96 13324-13329
  • 42 Brann T, Kayda D, Lyons R M et al.. Adenoviral vector-mediated expression of physiologic levels of human factor VIII in nonhuman primates.  Hum Gene Ther. 1999;  10 2999-3011
  • 43 Andrews J L, Shirley P S, Iverson W O et al.. Evaluation of the duration of human factor VIII expression in nonhuman primates after systemic delivery of an adenoviral vector.  Hum Gene Ther. 2002;  13 1331-1336
  • 44 Kay M A, Landen C N, Rothenberg S R et al.. In vivo hepatic gene therapy: complete albeit transient correction of factor IX deficiency in hemophilia B dogs.  Proc Natl Acad Sci USA. 1994;  91 2353-2357
  • 45 Walter J, You Q, Hagstrom J N, Sands M, High K A. Successful expression of human factor IX following repeat administration of adenoviral vector in mice.  Proc Natl Acad Sci USA. 1996;  93 3056-3061
  • 46 Schneider H, Adebakin S, Themis M et al.. Therapeutic plasma concentrations of human factor IX in mice after gene delivery into the amniotic cavity: a model for the prenatal treatment of haemophilia B.  J Gene Med. 1999;  1 424-432
  • 47 Kung S H, Hagstrom J N, Cass D et al.. Human factor IX corrects the bleeding diathesis of mice with hemophilia B.  Blood. 1998;  91 784-790
  • 48 Dai Y, Schwarz E M, Gu D et al.. Cellular and humoral immune responses to adenoviral vectors containing factor IX gene: tolerization of factor IX and vector antigens allows for long-term expression.  Proc Natl Acad Sci USA. 1995;  92 1401-1405
  • 49 Fields P A, Kowalczyk D W, Arruda V R et al.. Role of vector in activation of T cell subsets in immune responses against the secreted transgene product factor IX.  Mol Ther. 2000;  1 225-235
  • 50 Lozier J N, Metzger M E, Donahue R E, Morgan R A. The rhesus macaque as an animal model for hemophilia B gene therapy.  Blood. 1999;  93 1875-1881
  • 51 Morral N, O'Neal W K, Rice K et al.. Lethal toxicity, severe endothelial injury, and a threshold effect with high doses of an adenoviral vector in baboons.  Hum Gene Ther. 2002;  13 143-154
  • 52 Fang B, Eisensmith R C, Wang H et al.. Gene therapy for hemophilia B: host immunosuppression prolongs the therapeutic effect of adenovirus-mediated factor IX expression.  Hum Gene Ther. 1995;  6 1039-1044
  • 53 Smith T A, White B D, Gardner J M, Kaleko M, McClelland A. Transient immunosuppression permits successful repetitive intravenous administration of an adenovirus vector.  Gene Ther. 1996;  3 496-502
  • 54 Yang Y, Greenough K, Wilson J M. Transient immune blockade prevents formation of neutralizing antibody to recombinant adenovirus and allows repeated gene transfer to mouse liver.  Gene Ther. 1996;  3 412-420
  • 55 Morral N, O'Neal W, Rice K et al.. Administration of helper-dependent adenoviral vectors and sequential delivery of different vector serotype for long-term liver-directed gene transfer in baboons.  Proc Natl Acad Sci USA. 1999;  96 12816-12821
  • 56 Kochanek S, Clemens P R, Mitani K et al.. A new adenoviral vector: Replacement of all viral coding sequences with 28 kb of DNA independently expressing both full-length dystrophin and beta-galactosidase.  Proc Natl Acad Sci USA. 1996;  93 5731-5736
  • 57 Kochanek S. Development of high-capacity adenoviral vectors for gene therapy.  Thromb Haemost. 1999;  82 547-551
  • 58 Morsy M A, Gu M, Motzel S et al.. An adenoviral vector deleted for all viral coding sequences results in enhanced safety and extended expression of a leptin transgene.  Proc Natl Acad Sci USA. 1998;  95 7866-7871
  • 59 Schiedner G, Morral N, Parks R J et al.. Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity.  Nat Genet. 1998;  18 180-183
  • 60 Parks R J, Chen L, Anton M et al.. A helper-dependent adenovirus vector system: removal of helper virus by Cre-mediated excision of the viral packaging signal.  Proc Natl Acad Sci USA. 1996;  93 13565-13570
  • 61 Parks R J, Graham F L. A helper-dependent system for adenovirus vector production helps define a lower limit for efficient DNA packaging.  J Virol. 1997;  71 3293-3298
  • 62 Mitani K, Graham F L, Caskey C T, Kochanek S. Rescue, propagation, and partial purification of a helper virus-dependent adenovirus vector.  Proc Natl Acad Sci USA. 1995;  92 3854-3858
  • 63 Clemens P R, Kochanek S, Sunada Y et al.. In vivo muscle gene transfer of full-length dystrophin with an adenoviral vector that lacks all viral genes.  Gene Ther. 1996;  3 965-972
  • 64 Chen H H, Mack L M, Kelly R et al.. Persistence in muscle of an adenoviral vector that lacks all viral genes.  Proc Natl Acad Sci USA. 1997;  94 1645-1650
  • 65 Lieber A, He C Y, Kirillova I, Kay M A. Recombinant adenoviruses with large deletions generated by Cre-mediated excision exhibit different biological properties compared with first-generation vectors in vitro and in vivo.  J Virol. 1996;  70 8944-8960
  • 66 Zhang W W, Josephs S F, Zhou J et al.. Development and application of a minimal-adenoviral vector system for gene therapy of hemophilia A.  Thromb Haemost. 1999;  82 562-571
  • 67 Thomas C E, Schiedner G, Kochanek S, Castro M G, Lowenstein P R. Peripheral infection with adenovirus causes unexpected long-term brain inflammation in animals injected intracranially with first-generation, but not with high-capacity, adenovirus vectors: toward realistic long- term neurological gene therapy for chronic diseases.  Proc Natl Acad Sci USA. 2000;  97 7482-7487
  • 68 Balague C, Zhou J, Dai Y et al.. Sustained high-level expression of full-length human factor VIII and restoration of clotting activity in hemophilic mice using a minimal adenovirus vector.  Blood. 2000;  95 820-828
  • 69 Zou L, Zhou H, Pastore L, Yang K. Prolonged transgene expression mediated by a helper-dependent adenoviral vector (hdAd) in the central nervous system.  Mol Ther. 2000;  2 105-113
  • 70 Reddy P S, Sakhuja K, Ganesh S et al.. Sustained human factor VIII expression in hemophilia A mice following systemic delivery of a gutless adenoviral vector.  Mol Ther. 2002;  5 63-73
  • 71 Chuah M K, Schiedner G, Thorrez L et al.. Therapeutic factor VIII levels and negligible toxicity in mouse and dog models of hemophilia A following gene therapy with high-capacity adenoviral vectors.  Blood. 2003;  101 1734-1743
  • 72 Ehrhardt A, Kay M A. A new adenoviral helper-dependent vector results in long-term therapeutic levels of human coagulation factor IX at low doses in vivo.  Blood. 2002;  99 3923-3930
  • 73 Schnell M A, Zhang Y, Tazelaar J et al.. Activation of innate immunity in nonhuman primates following intraportal administration of adenoviral vectors.  Mol Ther. 2001;  3 708-722
  • 74 Kafri T, Morgan D, Krahl T et al.. Cellular immune response to adenoviral vector infected cells does not require de novo viral gene expression: implications for gene therapy.  Proc Natl Acad Sci USA. 1998;  95 11377-11382
  • 75 Fang B, Andreason G, Hariharan M et al.. Pre-clinical efficacy and safety studies of a gutless adenovirus vector (MAXADFVIII) for treatment of haemophilia A.  Thromb Haemost. 2001;  86 OC2490
  • 76 VandenDriessche T, Collen D, Chuah M K. Viral vector-mediated gene therapy for hemophilia.  Curr Gene Ther. 2001;  1 301-315
  • 77 Brown B D, Shi C X, Powell S et al.. Helper-dependent adenoviral vectors mediate therapeutic factor VIII expression for several months with minimal accompanying toxicity in a canine model of severe hemophilia A.  Blood. 2004;  103 804-810
  • 78 Brown B D, Lillicrap D. Dangerous liaisons: the role of “danger” signals in the immune response to gene therapy.  Blood. 2002;  100 1133-1140
  • 79 Ehrhardt A, Xu H, Kay M A. Episomal persistence of recombinant adenoviral vector genomes during the cell cycle in vivo.  J Virol. 2003;  77 7689-7695
  • 80 Ehrhardt A, Xu H, Dillow A M et al.. A gene-deleted adenoviral vector results in phenotypic correction of canine hemophilia B without liver toxicity or thrombocytopenia.  Blood. 2003;  102 2403-2411
  • 81 Fechner H, Haack A, Wang H et al.. Expression of coxsackie adenovirus receptor and alpha v-integrin does not correlate with adenovector targeting in vivo indicating anatomical vector barriers.  Gene Ther. 1999;  6 1520-1535
  • 82 Yant S R, Meuse L, Chiu W et al.. Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon system.  Nat Genet. 2000;  25 35-41
  • 83 Yant S R, Ehrhardt A, Mikkelsen J G et al.. Transposition from a gutless adeno-transposon vector stabilizes transgene expression in vivo.  Nat Biotechnol. 2002;  20 999-1005
  • 84 Shayakhmetov D M, Carlson C A, Stecher H et al.. A high-capacity, capsid-modified hybrid adenovirus/adeno-associated virus vector for stable transduction of human hematopoietic cells.  J Virol. 2002;  76 1135-1143
  • 85 Van Damme A, Chuah M KL, Collen D, VandenDriessche T. Onco-retroviral and lentiviral vector-based gene therapy for hemophilia: preclinical studies.  Semin Thromb Hemost. 2004;  30 185-196
  • 86 Krougliak V A, Krougliak N, Eisensmith R C. Stabilization of transgenes delivered by recombinant adenovirus vectors through extrachromosomal replication.  J Gene Med. 2001;  3 51-58
  • 87 Kreppel F, Kochanek S. Episomally persisting high-capacity adenoviral vectors for prolonged transgene expression in proliferating cells.  Mol Ther. 2003;  7 S192-S193
  • 88 Bristol J A, Shirley P, Idamakanti N, Kaleko M, Connelly S. In vivo dose threshold effect of adenovirus-mediated factor VIII gene therapy in hemophiliac mice.  Mol Ther. 2000;  2 223-232
  • 89 Tao N, Gao G P, Parr M et al.. Sequestration of adenoviral vector by Kupffer cells leads to a nonlinear dose response of transduction in liver.  Mol Ther. 2001;  3 28-35
  • 90 Kurt-Jones E A, Popova L, Kwinn L et al.. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus.  Nat Immunol. 2000;  1 398-401
  • 91 Molinier-Frenkel V, Lengagne R, Gaden F et al.. Adenovirus hexon protein is a potent adjuvant for activation of a cellular immune response.  J Virol. 2002;  76 127-135
  • 92 Pastore L, Morral N, Zhou H et al.. Use of a liver-specific promoter reduces immune response to the transgene in adenoviral vectors.  Hum Gene Ther. 1999;  10 1773-1781
  • 93 De Geest B R, Van Linthout S A, Collen D. Humoral immune response in mice against a circulating antigen induced by adenoviral transfer is strictly dependent on expression in antigen- presenting cells.  Blood. 2003;  101 2551-2556
  • 94 Schiedner G, Bloch W, Hertel S et al.. Hemodynamic response to intravenous adenovirus vector particles caused by systemic Kupffer cell mediated activation of endothelial cells.  Mol Ther. 2003;  7 S7
  • 95 Fisher K D, Stallwood Y, Green N K et al.. Polymer-coated adenovirus permits efficient retargeting and evades neutralising antibodies.  Gene Ther. 2001;  8 341-348
  • 96 Croyle M A, Chirmule N, Zhang Y, Wilson J M. PEGylation of E1-deleted adenovirus vectors allows significant gene expression on readministration to liver.  Hum Gene Ther. 2002;  13 1887-1900
  • 97 Smith T, Idamakanti N, Kylefjord H et al.. In vivo hepatic adenoviral gene delivery occurs independently of the coxsackievirus-adenovirus receptor.  Mol Ther. 2002;  5 770-779
  • 98 Volpers C, Thirion C, Biermann V et al.. Antibody-mediated targeting of an adenovirus vector modified to contain a synthetic immunoglobulin g-binding domain in the capsid.  J Virol. 2003;  77 2093-2104

Marinee K L ChuahPh.D. 

Center for Transgene Technology and Gene Therapy, University of Leuven, Flanders Interuniversity Institute for Biotechnology (VIB), University Hospital Gasthuisberg

Herestraat 49, B-3000 Leuven, Belgium

Email: marinee.chuah@med.kuleuven.ac.be