Int J Sports Med 2005; 26(8): 626-631
DOI: 10.1055/s-2004-830379
Physiology & Biochemistry

© Georg Thieme Verlag KG Stuttgart · New York

Diving-Induced Venous Gas Emboli Do not Increase Pulmonary Artery Pressure

Z. Valic1 , D. Duplančić2 , D. Baković1 , V. Ivančev1 , D. Eterović1 , U. Wisløff3 , 4 , A. O. Brubakk4 , Ž. Dujić1
  • 1Department of Physiology and Biophysics, University of Split School of Medicine, Split, Croatia
  • 2Department of Internal Medicine, University of Split Clinical Hospital, Split Croatia
  • 3Department of Cardiology, St. Olavs Hospital, Trondheim, Norway
  • 4Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
Further Information

Publication History

Accepted after revision: August 10, 2004

Publication Date:
22 December 2004 (online)

Abstract

Venous gas emboli are frequently observed in divers even if proper decompression procedures are followed. This study was initiated to determine if pulmonary artery pressure increases in asymptomatic divers, which could increase the risk of arterial embolization due to passage of venous gas emboli from the right to the left side of the heart. Recordings of venous gas emboli and estimation of pulmonary artery pressure by non-invasive transthoracic echocardiography were applied in 10 recreational scuba diving volunteers before and 20, 40, 60, and 80 min after simulated dives to 18 m (80 min bottom time) in a hyperbaric chamber. The ratio between pulmonary artery acceleration time and right ventricular ejection time was used as an estimate of pulmonary artery pressure. None of investigated divers had signs of decompression sickness. Despite the post-dive presence of the venous gas emboli, measured in the region of the pulmonary valve annulus (mean = 1.71 bubbles · cm-2, 40 min after dive), the ratio between pulmonary artery acceleration time and right ventricular ejection time did not decrease, but actually increased (from 0.43 ± 0.06 to 0.49 ± 0.06, 40 min after dive; p < 0.05), suggesting a decrease in pulmonary artery pressure after the dive. We conclude that diving-induced venous gas bubbles do not cause significant changes in the central circulation which could increase the risk of arterial embolization.

References

  • 1 Balestra C, Germonpre P, Marroni A. Intrathoracic pressure changes after Valsalva strain and other maneuvers: implications for divers with patent foramen ovale.  Undersea Hyperb Med. 1998;  25 171-174
  • 2 Brubakk A O, Vik A, Flook V. Gas bubbles and the lungs. Lundgren CAG, Miller JN The Lung at the Depth. New York; Marcel Dekker 1999: 237-294
  • 3 Butler B D, Conkin J, Luehr S. Pulmonary hemodynamics, extravascular lung water and residual gas bubbles following low dose venous gas emboli.  Aviat Space Environ Med. 1989;  60 1178-1182
  • 4 Butler B D, Hills B A. Transpulmonary passage of venous gas emboli.  J Appl Physiol. 1985;  59 543-547
  • 5 Chang H K, Delaunois L, Bioleau R, Martin R R. Redistribution of pulmonary blood flow during experimental air embolism.  J Appl Physiol. 1981;  51 211-217
  • 6 Cross M R, Ritter J M, Pimlott J, Barlow S, Dollery C T. Absence of circulating PGI2 response to bubble-provoking decompression.  Undersea Biomed Res. 1987;  14 371-372
  • 7 Diesel D D, Ryles M T, Pilmanis A A, Balldin U I. Non-invasive measurement of pulmonary artery pressure in humans with simulated altitude-induced venous gas emboli.  Aviat Space Environ Med. 2002;  73 128-133
  • 8 Eftedal O, Brubakk A O. Agreement between trained and untrained observers in grading intravascular bubble signals in ultrasonic images.  Undersea Hyperbar Med. 1997;  24 293-299
  • 9 Gorgulu S, Eksik A, Eren M, Celik S, Uslu N, Yildirim A, Dagdeviren B, Tezel T. Assessment of the effects of various maneuvers on both atrial pressure changes.  Int J Cardiol. 2003;  92 241-245
  • 10 Hlastala M P, Robertson H T, Ross B K. Gas exchange abnormalities produced by venous gas emboli.  Respir Physiol. 1979;  35 1-17
  • 11 Ikeda T, Suzuki S, Shimizu K, Okamoto Y, Llewellyn M E. M-mode ultrasonic detection of microbubbles following saturation diving: A case report and proposal for a new grading system.  Aviat Space Environ Med. 1989;  60 166-169
  • 12 Kitabatake A, Inoue M, Asao M, Masuyama T, Tanouchi J, Morita T, Mishima M, Uematsu M, Shimazu T, Hori M, Abe H. Noninvasive evaluation of pulmonary hypertension by a pulsed Doppler technique.  Circulation. 1983;  68 302-309
  • 13 Mandelbaum I, King H. Pulmonary air embolism.  Surg Forum. 1963;  14 236-238
  • 14 Marinović-Terzić I, Baković D, Ivančev V, Dujić Ž. Acute cardiorespiratory function changes in recreational divers after open sea air dive. Proceedings of the 7th Annual Congress of the European College of Sports Science. 2002: P356 (Abstract)
  • 15 McQuillan B M, Picard M H, Leavitt M, Weyman A E. Clinical correlates and reference intervals for pulmonary artery systolic pressure among echocardiographically normal subjects.  Circulation. 2001;  104 2797-2802
  • 16 Moon R E, Camporesi E M, Kisslo J A. Patent foramen ovale and decompression sickness in divers.  Lancet. 1989;  1 513-514
  • 17 Nishi R Y. Doppler evaluation of decompression tables. Lin YC, Shida KK Man in the Sea. San Pedro; Best Publishing 1990: 297-316
  • 18 Nishi R, Eftedal O, Brubakk A O. Bubble detection. Brubakk AO, Neumann TS Bennet & Elliot's Physiology and Medicine of Diving. London; W. B. Saunders 2003: 501-529
  • 19 Pasierski T J, Starling R C, Binkley P F, Pearson A C. Echocardiographic evaluation of pulmonary artery distensibility.  Chest. 1993;  103 1080-1083
  • 20 Stoddard M F, Keedy D L, Dawkins P R. The cough test is superior to the Valsalva maneuver in the delineation of right-to-left shunting through a patent foramen ovale during contrast transesophageal echocardiography.  Am Heart J. 1993;  125 185-189
  • 21 Navy U S. Air Diving (February 15, 1993, change I dated July 15, 1996). Published by Direction of Commander, Naval Sea System Command. 1996
  • 22 Verstappen F TJ, Bernards J A, Kreuzer F. Effects of pulmonary gas embolism on circulation and respiration in the dog: 1. Effects on circulation.  Pflugers Arch. 1977;  368 89-96
  • 23 Vik A, Jensen B M, Eftedal O, Brubakk A O. Relationship between venous bubbles and hemodynamic responses after decompression in pigs.  Undersea Hyperbaric Med. 1993;  20 233-248
  • 24 Wilmshurst P T, Byrne J C, Webb-Peploe M M. Relation between interatrial shunts and decompression sickness in divers.  Lancet. 1989;  2 1302-1306
  • 25 Yagi H, Yamada H, Kobayashi T, Sekiguchi M. Doppler assessment of pulmonary hypertension induced by hypoxic breathing in subjects susceptible to high altitude pulmonary edema.  Am Rev Respir Dis. 1990;  142 796-801

M. D., Ph.D. Željko Dujić

Department of Physiology and Biophysics, University of Split School of Medicine

Šoltanska 2

21000 Split

Croatia

Phone: + 38521557906

Fax: + 38 5 21 55 79 55

Email: zdujic@bsb.mefst.hr