Subscribe to RSS
DOI: 10.1055/s-2004-837194
A Flexible Carbanionic Approach to Protected trans-(2R,3S)-2-Substituted 3-Aminopyrrolidines: Application to the Asymmetric Synthesis of (+)-Absouline
Publication History
Publication Date:
17 December 2004 (online)
Abstract
Based on the use of phenyl thioether (3S)-7 as a synthetic equivalent to the N- and α-dianions (3S)-2a, a new carbanionic approach to trans-(2R,3S)-2-substituted 3-aminopyrrolidines (10) is described. Application of the method to the asymmetric synthesis of 1-aminopyrrolizidine alkaloid (+)-absouline is also reported.
Key words
asymmetric synthesis - additions - pyrrolidine - carbanions - reductive lithiation
- For reviews involving the generation and application of α-lithioamines, see:
-
1a
Gant TG.Meyers AI. Tetrahedron 1994, 50: 2297 -
1b
Beak P.Basu A.Gallagher DJ.Park YS.Thayumanavan S. Acc. Chem. Res. 1996, 29: 552 -
1c
Gawley RE. Curr. Org. Chem. 1997, 1: 71 -
1d
Kessar SV.Singh P. Chem. Rev. 1997, 97: 721 -
1e
Katritzky A.Qi M. Tetrahedron 1998, 54: 2647 -
1f
Husson HP.Royer J. Chem. Soc. Rev. 1999, 28: 383 -
1g
Rassu G.Zanardi F.Battistini L.Casiraghi G. Chem. Soc. Rev. 2000, 29: 109 - For representative approaches to optically active α-lithiopyrrolidines and α-lithiopiperidines, see:
-
2a
Meyers AI.Dickman DA.Bailey TR. J. Am. Chem. Soc. 1985, 107: 7974 -
2b
Huang P.-Q.Arseniyadis S.Husson H.-P. Tetrahedron Lett. 1987, 28: 547 -
2c
Gawley RE.Hart GC.Bartolotti LJ. J. Org. Chem. 1989, 54: 175 -
2d
Pearson WH.Lindbeck AC.Kampf JW. J. Am. Chem. Soc. 1993, 115: 2622 -
2e
Wu S.Lee S.Beak P. J. Am. Chem. Soc. 1996, 118: 715 -
2f
Coldham I.Hufton R.Snowden D. J. Am. Chem. Soc. 1996, 118: 5322 -
2g
Dearden MJ.Firkin CR.Hermet J.-PR.O’Brien P. J. Am. Chem. Soc. 2002, 124: 11870 -
2h
Wiberg KB.Bailey WF. Angew. Chem. Int. Ed. 2000, 39: 2127 -
2i
Watson RT.Gore VK.Chandupatla KR.Dieter RK.Snyder JP. J. Org. Chem. 2004, 69: 6105 - 3 For a racemic synthetic equivalent to synthon 2 (X = O), see:
Thompson SHJ.Subramanian RS.Roberts JK.Hadley MS. J. Chem. Soc., Chem. Commun. 1994, 933 - For chiral non-racemic synthetic equivalents to synthon 2 (X = O), see:
-
4a
Huang P.-Q.Wu T.-J.Ruan Y.-P. Org. Lett. 2003, 5: 4341 -
4b
Huang P.-Q.Deng J. Synlett 2004, 247 - 5
Beak P.Lee WK. J. Org. Chem. 1993, 58: 1109 -
6a
Sunose M.Peakman TM.Charmant JPH.Gallagher T.Macdonald SJF. Chem. Commun. 1998, 1723 -
6b
Pandey G.Chakrabarti D. Tetrahedron Lett. 1998, 39: 8371 ; and references cited therein - For approaches to optically active 2-substituted 3-aminopyrrolidines, see:
-
7a
Iwanami S.Takashima M.Hirata Y.Hasegawa O.Usuda S. J. Med. Chem. 1981, 24: 1224 - 7b Drugs Future 1991, 16: 95
-
7c
Andres CJ.Lee PH.Nguyen TH.Meyers AI. J. Org. Chem. 1995, 60: 3189 -
7d
Huang P.-Q.Wang SL.Ye JL.Ruan YP.Huang YQ.Zheng H.Gao J. Tetrahedron 1998, 54: 12547 -
7e
Borthwick AD.Crame AJ.Davies DE.Exall AM.Jackson DL.Mason AM.Pennell AMK.Weingarten GG. Synlett 2000, 504 -
7f
Cooke JWB.Berry MB.Caine DM.Cardwell KS.Cook JS.Hodgson A. J. Org. Chem. 2001, 66: 334 -
7g
Andrews DM.Carey SJ.Chaignot H.Coomber BA.Gray NM.Hind SL.Jones PS.Mills G.Robinson JE.Slater MJ. Org. Lett. 2002, 4: 4475 - For approaches to racemic 2-substituted 3-aminopyrrolidines, see:
-
8a
MacDonald SJF.Clarke GDE.Dowle MD.Harrison LA.Hodgson ST.Inglis GGA.Johnson MR.Shah P.Upton RJ.Walls SB. J. Org. Chem. 1999, 64: 5166 -
8b
Norton Matos MRP.Afonso CAM.Batey RA. Tetrahedron Lett. 2001, 42: 7007 -
8c
Suero R.Gorgojo JM.Aurrecoechea M. Tetrahedron 2002, 58: 6211 - 9
Flynn DL.Zabrowski DL.Becker DP.Nosal R.Villamil CI.Gullickson GW.Moummi C.Yang D.-C. J. Med. Chem. 1992, 35: 1489 -
10a For a recent asymmetric synthesis of 1-aminopyrrolizidine, see:
Giri N.Petrini M.Profeta R. J. Org. Chem. 2004, 69: 7303 -
10b For an approach to optically active 1-aminopyrrolizidin-3-one derivative, see:
Langlois N.Radom M.-O. Tetrahedron Lett. 1998, 39: 857 - For approaches to racemic 1-aminopyrrolizidines, see:
-
11a
Suri KA.Suri OP.Sawhney RS.Gupta OP.Atal CK. Indian J. Chem., Sect. B 1977, 15: 972 -
11b
Suri KA.Suri OP.Atal CK. Indian J. Chem., Sect. B 1983, 22: 822 -
11c
Zabrowski DL.Becker DP.Nosal R.Villamil CI.Gullikson GW.Moummi C.Yang D.-C. J. Med. Chem. 1992, 35: 1486 -
11d
Ref. [13]
- 12
Ikhiri K.Ahond A.Poupat C.Potier P.Pusset J.Sévenet T. J. Nat. Prod. 1987, 50: 626 - 13 For preparation of both enantiomers of absouline by racemic synthesis followed by chiral HPLC separation, see:
Christine C.Ikhiri K.Ahond A.Mourabit AA.Poupat C.Potier P. Tetrahedron 2000, 56: 1837 - 14
Neuner-Jehle N.Nesvadba H.Spiteller G. Monatsh. Chem. 1965, 96: 321 -
15a
Glass RS.Deardorff DR.Gains LH. Tetrahedron Lett. 1978, 2965 -
15b
Wilson SR.Sawicki RA.Huffman JC. J. Org. Chem. 1981, 46: 3887 -
15c
Tufariello JJ.Merckler H.Winzenberg K. J. Org. Chem. 1986, 51: 3556 - 16
Huang P.-Q.Zheng X.Wang S.-L.Ye J.-L.Jin L.-R.Chen Z. Tetrahedron: Asymmetry 1999, 10: 3309 -
17a
Screttas CG.Micha-Screttas M. J. Org. Chem. 1978, 43: 1064 -
17b
Freeman PK.Hutchinson LL. J. Org. Chem. 1980, 45: 1924 -
17c
Cohen T.Matz JR. J. Am. Chem. Soc. 1980, 102: 6900 -
17d
Tsunoda T.Fujiwara K.Yamamoto Y.Ito S. Tetrahedron Lett. 1991, 32: 1975 -
17e For reviews, see:
Cohen T.Bhupathy M. Acc. Chem. Res. 1989, 22: 152 -
17f
Yus M. Chem. Soc. Rev. 1996, 25: 155 -
17g
Cohen T. Pure Appl. Chem. 1996, 68: 913 - For analogue glycosyl dianions, see:
-
18a
Hoffmann M.Kessler H. Tetrahedron Lett. 1994, 35: 6067 -
18b
Urban D.Skrydstrup T.Riche C.Chiaroni A.Beau JM. Chem. Commun. 1996, 1883 -
18c
Westermann B.Walter A.Diedrichs N. Angew. Chem. Int. Ed. 1999, 38: 3384 - 19
Tang T.Zhu C.Huang P.-Q. Heterocycles 2004, 64: in press ; (http://www.heterocycles.jp/heterohtml/index.html) - 20
Wijberg JBPA.Schoemaker HE.Speckamp WN. Tetrahedron 1978, 34: 179 - 23
Rychnovsky SD.Skalitzky DJ. J. Org. Chem. 1992, 57: 4336 - 24
Sibi MP.Christensen JW. J. Org. Chem. 1999, 64: 6434
References
All new compounds gave satisfactory analytical and spectral data.
22
General Procedure for the One-Pot Synthesis of Compounds 10a-h:
To a solution of phenyl thioether 7 (0.48 mmol) in anhyd THF (1.6 mL) at -78 °C was added successively n-BuLi (2.0 M solution in n-hexane, 0.69 mmol) and freshly prepared lithium naphthalenide (1.5 M solution in THF, 1.36 mmol). After being stirred for 30 min, an electrophile (0.70 mmol) was added. The stirring was maintained at -78 °C for 1 h, then allowed to warm to 0 °C. A sat. aq solution of NH4Cl was added and the mixture was extracted with CH2Cl2 (3 × 5 mL). The combined organic layers were dried over Na2SO4, filtered and concentrated in vacuo. Flash chromatography (EtOAc-petroleum ether = 1:3) of the crude afforded the desired product 10b-i and a small amount of reduced product 10a.
Data for 10b: Electrophile used: acetone. Yield 86%; colorless oil; [α]D
20 -4.95 (c 1.0, CHCl3). IR (film): νmax = 3421, 3319, 2975, 1697, 1669, 1535, 1399, 1246, 1170, 1122 cm-1. 1H NMR (500 MHz, CDCl3): δ(rotamers) = 1.15 (br s, 3 H), 1.34 (br s, 3 H), 1.48 (s, 9 H), 1.68-1.78 (m, 1 H), 2.20-2.32 (m, 1 H), 3.28-3.36 (m, 1 H), 3.60-3.80 (m, 2 H), 4.10-4.20 (m, 1 H), 4.80-5.00 (m, 2 H), 5.10 (m, 2 H), 7.28-7.40 (m, 5 H). 13C NMR (125 MHz, DMSO-d
6): δ(rotamers) = 28.26 (1 C), 28.38 (1 C), 29.58 (3 C), 30.19, 30.66, 31.10 (1 C), 43.88, 44.15 (1 C), 49.89 (1 C), 50.38, 50.68 (1 C), 65.57, 65.70 (1 C), 72.22 (1 C), 78.51, 78.83 (1 C), 128.00, 128.06, 128.48, 128.57, 137.23, 137.38 (6 C), 153.72 (1 C), 155.68, 155.97 (1 C). MS (ESI): m/z (%) = 379 (100) [M + H+], 401 (60) [M + Na+]. HRMS: m/z calcd for [C20H30N2O5 + H]+: 379.2234; found: 379.2233.
In the reported 1H NMR and 13C NMR spectral data of 1-aminopyrrolizidine and its derivatives (13, [10a] 14, [10a] [12] 4, [11] [12] and 5 [11] [12] ), some differences exist from one to the other. This may be due to conformational isomerism and/or H-bond formation in the 1-aminopyrrolizidine ring system. In addition, these molecules were shown to be labile.
26We thank Dr. C. Poupat (Institut de Chimie des Substances Naturelles, CNRS, France) for sending us a sample of natural absouline.