Abstract
α-d -Galacto-2-deoxy-oct-3-ulopyranosonic acids, α-d -gluco-2-deoxy-oct-3-ulopyranosonic acids and α-l -galacto-2,8-dideoxy-oct-3-ulopyranosonic acids can be converted into unnatural glycosyl
amino acids via a one-pot intramolecular Ritter reaction. Initially, a ketopyranoside-based
acid condenses under Lewis acid-promoted conditions with a nitrile (benzonitrile or
acetonitrile) and a partially protected diamino ester (Boc-DAB-Ot -Bu, Boc-Orn-Ot -Bu) to form unnatural glycosyl amino esters. The resulting glycosyl amino esters
are useful building blocks for solid-phase glycopeptide synthesis. For example, the
glycosyl amino acid derived by condensation of α-d -galacto-2-deoxy-oct-3-ulopyranosonic acid with benzonitrile and DAB was used to replace
serine in the potent opioid peptide sequence H2 N-Tyr-d -Thr-Gly-Phe-Leu-Ser-CONH2 .
Key words
carbohydrates - glycopeptides - combinatorial chemistry - glycosyl amino acids - peptides
References
<A NAME="RS09104ST-1">1 </A>
Dwek RA.
Chem. Rev.
1996,
96:
683
<A NAME="RS09104ST-2">2 </A>
Varki A.
Glycobiology
1993,
3:
97
<A NAME="RS09104ST-3">3 </A>
Grochee FC.
Gramer MJ.
Andersen DC.
Bahr JB.
Rasmusen JR. In Frontier in Bioprocessing II
Todd CP.
Sikdar SK.
Bier M.
American Chemical Society;
Washington:
1992.
p.199
<A NAME="RS09104ST-4">4 </A>
Fisher JF.
Harrison AW.
Bundy GL.
Wilkinson KF.
Rush BD.
Ruwart MJ.
J. Med. Chem.
1991,
34:
3140
<A NAME="RS09104ST-5">5 </A>
Mehta S.
Meldal M.
Duus JO.
Bock K.
J. Chem. Soc., Perkin Trans. 1
1999,
1445 ; and references cited therein
<A NAME="RS09104ST-6">6 </A>
Lohof E.
Planker E.
Mang C.
Burkhart F.
Dechantsreiter MA.
Haubner R.
Wester H.-J.
Schwaiger M.
Hölzemann G.
Goodman SL.
Kessler H.
Angew. Chem. Int. Ed.
2000,
39:
2761
<A NAME="RS09104ST-7">7 </A>
Weiss JB.
Lote CJ.
Bobinski H.
Nature (London) New Biol.
1971,
234:
25
<A NAME="RS09104ST-8">8 </A>
Hofsteenge J.
Müller DR.
Beer T.
Löffler A.
Richter WJ.
Vliegenhart JFG.
Biochemistry
1994,
33:
13524
For recent reviews on artificial glycosylamino acids, sugar amino acids and combinatorial
carbohydrate conjugates see:
<A NAME="RS09104ST-9A">9a </A>
Dondoni A.
Marra A.
Chem. Rev.
2000,
100:
4395
<A NAME="RS09104ST-9B">9b </A>
Peri F.
Cipolla L.
Forni E.
La Feria B.
Nicotra F.
Chemtracts
2001,
14:
481
<A NAME="RS09104ST-9C">9c </A>
Barkley A.
Arya P.
Chem.-Eur. J.
2001,
7:
555
<A NAME="RS09104ST-9D">9d </A>
Gruner SAW.
Locardi E.
Lohof E.
Kessler H.
Chem. Rev.
2002,
102:
491
<A NAME="RS09104ST-9E">9e </A>
Schweizer F.
Angew. Chem. Int. Ed.
2002,
41:
230 ; and references cited therein
<A NAME="RS09104ST-10A">10a </A>
Saha UK.
Roy R.
Tetrahedron Lett.
1995,
36:
3635
<A NAME="RS09104ST-10B">10b </A>
Saha U.
Roy R.
Tetrahedron Lett.
1997,
38:
7697
<A NAME="RS09104ST-10C">10c </A>
Kim JM.
Roy R.
Tetrahedron Lett.
1997,
38:
3487
<A NAME="RS09104ST-10D">10d </A>
Kim JM.
Roy R.
Carbohydr. Res.
1997,
298:
173
<A NAME="RS09104ST-11A">11a </A>
Hoffmann M.
Burkhart F.
Hessler G.
Kessler H.
Helv. Chim. Acta
1996,
79:
1519
<A NAME="RS09104ST-11B">11b </A>
Frey O.
Hoffmann M.
Kessler H.
Angew. Chem., Int. Ed. Engl.
1995,
34:
2026
<A NAME="RS09104ST-12A">12a </A>
Marcaurelle LA.
Rodriguez EC.
Bertozzi CR.
Tetrahedron Lett.
1998,
39:
8417
<A NAME="RS09104ST-12B">12b </A>
Peri F.
Cipolla L.
Rescigno M.
La Ferla B.
Nicotra F.
Bioconjugate Chem.
2001,
12:
325
<A NAME="RS09104ST-12C">12c </A>
Cipolla L.
Rescigno M.
Leone A.
Peri F.
La Ferla B.
Nicotra F.
Bioorg. Med. Chem. Lett.
2002,
10:
1639
<A NAME="RS09104ST-13">13 </A>
It is noteworthy that these β-galactosyl amides are not accessible via acylation of
the corresponding galactosyl-amine.
[14 ]
<A NAME="RS09104ST-14">14 </A>
Schweizer F.
Lohse A.
Otter A.
Hindsgaul O.
Synlett
2001,
1434
<A NAME="RS09104ST-15">15 </A>
Lohse A.
Schweizer F.
Hindsgaul O.
Comb. Chem. High Throughput Screening
2002,
5:
389
<A NAME="RS09104ST-16">16 </A>
Orsini F.
Di Teodoro E.
Tetrahedron: Asymmetry
2003,
14:
2521
<A NAME="RS09104ST-17">17 </A>
Yield calculation is based on the addition of the partially protected diamino ester.
<A NAME="RS09104ST-18">18 </A>
Products were identified by MS.
<A NAME="RS09104ST-19">19 </A>
Bilsky EJ.
Egleton RD.
Mitchell SA.
Palian MM.
Daid P.
Huber JD.
Jones H.
Yamamura HI.
Janders H.
Davis TP.
Porreca F.
Hruby VJ.
Polt R.
J. Med. Chem.
2000,
43:
2586
<A NAME="RS09104ST-20">20 </A>
Yields are based on isolated amount after reverse phase HPLC purification. Characteristic
data for 22 : 1 H NMR (600 MHz, CD3 OD, r.t.): δ = 3.93 (dd, J = 3.03 Hz, J < 1 Hz, H-6Gal ), 4.02 (d, J = 9.8 Hz, H-4Gal ), 6.80 (d, J = 8.4 Hz, 2 H), 7.15 (d, J = 8.4 Hz, 2 H), 7.20-7.35 (m, 4 H), 7.45-7.53 (m, 2 H), 7.55-7.62 (m, 2 H), 7.82
(d, J = 7.10 Hz, 2 H). MS (ES): m/z calcd [M + H]+ : 1022.48; found: 1022.65.
<A NAME="RS09104ST-21">21 </A>
Stott K.
Stonehouse J.
Keeler J.
Hwang TL.
Shaka AJ.
J. Am. Chem. Soc.
1995,
117:
4199
<A NAME="RS09104ST-22">22 </A>
Elmore DT.
Guthrie DJS.
Kay G.
Williams CH.
J. Chem. Soc., Perkin Trans. 1
1988,
1051
<A NAME="RS09104ST-23">23 </A> Prepared according to the procedure by:
Maetz P.
Rodriguez M.
Tetrahedron Lett.
1997,
38:
4221
<A NAME="RS09104ST-24">24 </A> It has been suggested that incorporation of hydrophilic carbohydrate moieties
into opioid peptides renders them amphipathic, promoting exchange between lipid and
aqueous phases, which may lead to enhanced blood brain barrier penetration see:
Palian MM.
Boguslavky VI.
O’Brien DF.
Polt R.
J. Am. Chem. Soc.
2003,
125:
5823
<A NAME="RS09104ST-25">25 </A>
The stereochemistry at the anomeric center in 28 has not yet been determined.
<A NAME="RS09104ST-26">26 </A>
We speculate that the axial substituent at the C-4 position in mannose-configurated
ulosonic acid 8 and rhamnose-configurated ulosonic acid 16 destabilizes the cyclic form and favors the open ketone form resulting in low yields
of the corresponding unnatural glycosyl amino acids (Scheme
[6 ]
).
<A NAME="RS09104ST-27">27 </A>
Arya P.
Barkley A.
Randell K.
J. Comb. Chem.
2002,
4:
193
<A NAME="RS09104ST-28">28 </A>
A 40 ms gaussian pulse with a 560 ms mixing time was used.
<A NAME="RS09104ST-29">29 </A>
Handlon AL.
Fraser-Reid B.
J. Am. Chem. Soc.
1993,
115:
3796
<A NAME="RS09104ST-30">30 </A>
Cyanoalanine and nitriles with branching at the β-position have previously been used
without success in an intermolecular Ritter reaction (see ref. 29).