Horm Metab Res 2005; 37(5): 270-274
DOI: 10.1055/s-2005-861468
Original Basic
© Georg Thieme Verlag KG Stuttgart · New York

Possible Involvement of Phosphatidylinositol 3-Kinase/Akt Pathway in Insulin-like Growth Factor-I-induced Alkaline Phosphatase Activity in Osteoblasts

T.  Noda1 , H.  Tokuda1, 2 , M.  Yoshida1 , E.  Yasuda1 , Y.  Hanai2 , S.  Takai1 , O.  Kozawa1
  • 1 Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
  • 2 Department of Clinical Laboratory, National Hospital for Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
Further Information

Publication History

Received 3 November 2004

Accepted after revision 10 March 2005

Publication Date:
22 June 2005 (online)

Abstract

In the present study, we investigated whether Akt is involved in insulin-like growth factor-I (IGF-I)-stimulated activity of alkaline phosphatase, a marker of mature osteoblast phenotype, in osteoblast-like MC3T3-E1 cells. IGF-I induced the phosphorylation of Akt in these cells. Akt inhibitor significantly suppressed the IGF-I-stimulated alkaline phosphatase activity. The phosphorylation of Akt induced by IGF-I was reduced by the Akt inhibitor. LY294002 and wortmannin, inhibitors of phosphatidylinositol 3-kinase, significantly suppressed the IGF-I-induced alkaline phosphatase activity. The phosphorylation of Akt induced by IGF-I was markedly reduced by LY294002 and wortmannin. These results strongly suggest that phosphatidylinositol 3-kinase/Akt plays a role in the IGF-I-stimulated alkaline phosphatase activity in osteoblasts.

References

  • 1 Conover C A. In vitro studies of insulin-like growth factor I and bone.  Growth Horm IGF Res. 2000;  10 S107-S110
  • 2 Olney R C. Regulation of bone mass by growth hormone.  Med Pediatr Oncol. 2003;  41 228-234
  • 3 Trippel S B. Potential role of insulin like growth factors in fracture healing.  Clin Orthop. 1998;  355 S301-S313
  • 4 Nijweide P J, Burger E H, Feyen J HM. Cells of bone: proliferation, differentiation, and humoral regulation.  Physiol Rev. 1986;  66 855-886
  • 5 Kozawa O, Takatsuki K, Kotake K, Yoneda M, Oiso Y, Saito H. Possible involvement of protein kinase C in proliferation and differentiation of osteoblast-like cells.  FEBS Lett. 1989;  243 183-185
  • 6 Robinson R J, Doty S B, Cooper R R. Electron microscopy of mammalian bone. In Biological mineralization. In: Zipkin I (ed) New York; Academic Press Inc 1973: 257-296
  • 7 Schmid C, Steiner T, Froesch E R. Insulin-like growth factor I supports differentiation of cultured osteoblast-like cells.  FEBS Lett. 1984;  173 48-52
  • 8 Kozawa O, Miwa M, Tokuda H, Kotoyori J, Oiso Y. Activation of protein kinase C inhibits 45Ca-accumulation in cultures of osteoblast-like cells: possible involvement of insulin-like growth factor-I.  Bone Miner. 1992;  19 235-243
  • 9 Coffer P J, Jin J, Woodgett J R. Protein kinase B (c-Akt): a multifunctional mediator of phosphatidylinositol 3-kinase activation.  Biochem J. 1998;  335 1-13
  • 10 Chan T O, Rittenhouse S E, Tsichlis P N. AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation.  Annu Rev Biochem. 1999;  68 965-1014
  • 11 Cantley L C. The phosphoinositide 3-kinase pathway.  Science. 2002;  296 1655-1657
  • 12 Borgatti P, Martelli A M, Bellacosa A, Casto R, Massari L, Capitani S, Neri L M. Translocation of Akt/PKB to the nucleus of osteoblast-like MC3T3-E1 cells exposed to proliferative growth factors.  FEBS Lett. 2000;  477 27-32
  • 13 Danciu T E, Adam R M, Naruse K, Freeman M R, Hauschka P V. Calcium regulates the PI3K-Akt pathway in stretched osteoblasts.  FEBS Lett. 2003;  536 193-197
  • 14 Kang H Y, Cho C L, Huang K L, Wang J C, Hu Y C, Lin H K, Chang C, Huang K E. Nongenomic Androgen Activation of Phosphatidylinositol 3-Kinase/Akt Signaling Pathway in MC3T3-E1 Osteoblasts.  J Bone Miner Res. 2004;  19 1181-1190
  • 15 Sudo H, Kodama H, Amagai Y, Yamamoto S, Kasai S. In vivo differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria.  J Cell Biol. 1983;  96 191-198
  • 16 Kozawa O, Tokuda H, Miwa M, Kotoyori J, Oiso Y. Cross-talk regulation between cyclic AMP production and phosphoinositide hydrolysis induced by prostaglandin E2 in osteoblast-like cells.  Exp Cell Res. 1992;  198 130-134
  • 17 Lowry O H, Roberts N R, Wu M L, Hixon W S, Crawford E J. The quantitative histochemistry of brain. II. Enzyme measurements.  J Biol Chem. 1954;  207 19-37
  • 18 Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.  Nature. 1970;  227 680-685
  • 19 Kato K, Ito H, Hasegawa K, Inaguma Y, Kozawa O, Asano T. Modulation of the stress-induced synthesis of hsp27 and αB-crystallin by cyclic AMP in C6 glioma cells. J.  Neurochem. 1996;  66 946-950
  • 20 Hu Y, Qiao L, Wang S, Rong S B, Meuillet E J, Berggren M, Gallegos A, Powis G, Kozikowski A P. 3-(Hydroxymethyl)-bearing phosphatidylinositol ether lipid analogues and carbonate surrogates block PI3-K, Akt, and cancer cell growth.  J Med Chem. 2000;  43 3045-3451
  • 21 Vlahos C J, Matter W F, Hui K Y, Brown R F. A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002).  J Biol Chem. 1994;  269 5241-5248
  • 22 Arcaro A, Wymann M P. Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor: the role of phosphatidylinositol 3,4,5-trisphosphate in neutrophil responses.  Biochem J. 1993;  296 297-301
  • 23 Seibel M J. Molecular markers of bone turnover: biochemical, technical and analytical aspects.  Osteoporos Int. 2000;  6 S18-S29
  • 24 Aubin J E, Liu F. The osteoblast lineage. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of Bone Biology. San Diego; Academic Press 1996: 51-68

Dr. Osamu Kozawa

Department of Pharmacology, Gifu University Graduate School of Medicine ·

Gifu 501-1194 · Japan

Phone: + 81 (58) 230 62 14

Fax: + 81 (58) 230 62 15

Email: okozawa@cc.gifu-u.ac.jp