Abstract
Immobilization of a platinum catalyst was carried out on the basis of the polymer incarcerated (PI) method. The PI platinum catalyst thus prepared showed high activity in hydrosilylation, and recovery and reuse of the catalyst were attained without loss of activity. Application of this catalyst to hydrogenation is also reported.
Key words
immobilization - platinum - polymer - hydrosilylation - hydrogenation
References
1a
Comprehensive Handbook on Hydrosilylation
Marciniec B.
Pergamon Press;
Oxford England:
1992. and references therein
1b
Ojima I.
The Chemistry of Organic Silicon Compounds
Patai S.
Rappoport Z.
Wiley;
New York:
1989.
p.1479
1c
Harrod JF.
Chark AJ. In
Organic Synthesis via Metal Carbonyls
Wender I.
Pino P.
Wiley;
New York:
1977.
p.673
2a
Michalska ZM.
Strzelec K.
Sobczak JW.
J. Mol. Catal. A: Chem.
2000,
156:
91
2b
Michalska ZM.
Ostaszewski B.
Strzelec K.
J. Organomet. Chem.
1995,
496:
19
3
Hilal HS.
Suleiman MA.
Jondi WM.
Khalaf S.
Masoud MM.
J. Mol. Catal. A: Chem.
1999,
144:
47
4
Speier JL.
Webster JA.
Barrnes GH.
J. Am. Chem. Soc.
1957,
79:
974
For reviews, see:
5a
Hartley FR.
Supported Metal Complexes - A New Generation of Catalysts
D. Reidel Publishing Co.;
Dordrecht Germany:
1985.
Chap. 7.
p.204
5b
Comprehensive Handbook on Hydrosilylation
Marciniec B.
Guilinski J.
Kornetka ZW.
Marciniec B.
Pergamon Press;
Oxford UK:
1992.
Chap. 2.
p.84
6
Miao QJ.
Fang Z.-P.
Cai GP.
Catal. Commun.
2003,
4:
637
Recently, an effective polystyrene and polymethacrylate resin-supported Pt catalyst has been reported. See:
7a
Drake R.
Sherrington DC.
Thomson SJ.
Reactive and Functional Polymers
2004,
60:
65
7b
Drake R.
Dunn R.
Sherrington DC.
Thomson SJ.
J. Mol. Catal. A: Chem.
2001,
177:
49
7c
Drake R.
Dunn R.
Sherrington DC.
Thomson SJ.
Chem. Commun.
2000,
1931
7d Immobilization of platinum catalysts using pyridine, phosphine, and nitrile ligand are reported, see: Michalska ZM.
Strzelec K.
Sobezak JW.
J. Mol. Catal. A: Chem.
2000,
156:
91
7e
Kan C.
Yuan Q.
Luo X.
Kong X.
Polym. Adv. Technol.
1995,
7:
76
7f
Michalska ZM.
Ostaszewski B.
Zientarska J.
Reactive Polym.
1991-1992,
16:
213
8a
Akiyama R.
Kobayashi S.
J. Am. Chem. Soc.
2003,
125:
3412
8b
Okamoto K.
Akiyama R.
Kobayashi S.
J. Org. Chem.
2004,
69:
2871
8c
Okamoto K.
Akiyama R.
Kobayashi S.
Org. Lett.
2004,
6:
1987
9a
Kobayashi S.
Akiyama R.
Chem. Commun.
2003,
449
9b
Kobayashi S.
Nagayama S.
J. Am. Chem. Soc.
1998,
120:
2985
9c
Nagayama S.
Endo M.
Kobayashi S.
J. Org. Chem.
1998,
63:
6094
9d
Kobayashi S.
Endo M.
Nagayama S.
J. Am. Chem. Soc.
1999,
121:
11229
9e
Kobayashi S.
Ishida T.
Akiyama R.
Org. Lett.
2001,
3:
2649
9f
Akiyama R.
Kobayashi S.
Angew. Chem. Int. Ed.
2001,
40:
3469
9g
Akiyama R.
Kobayashi S.
Angew. Chem. Int. Ed.
2002,
41:
2602
9h
Ishida T.
Akiyama R.
Kobayashi S.
Adv. Synth. Catal.
2003,
345:
576
10 Platinum-phosphine complexes are generally more stable than the corresponding palladium complexes, see: Ugo R.
Coord. Chem. Rev.
1968,
3:
319
11
Kobayashi S.
Akiyama R.
Furuta T.
Moriwaki M.
Molecules Online
1998,
2:
35
12a
31 P{1 H} NMR analysis data (ppm): PI Pt (1 ) (CDCl3 , SR-MAS): δ = 28.8 (s) [solid PPh3 (δ = -8.4) was used as an external standard]. Confer: O=PPh3 (CDCl3 ): δ = 29.3; PPh3 (CDCl3 ): δ = -4.7.
12b For platinum-phosphine complexes, see: Sen A.
Halpern J.
Inorg. Chem.
1980,
19:
1073
12c Pt(PPh3 )4 (toluene-d
8 ): δ = 9.2; Pt(PPh3 )3 (toluene-d
8 ): δ = 49.9; Pt(PPh3 )2 (O2 ) (toluene-d
8 ): δ = 16.4.
TEM analysis of PI Pt (1 ) disclosed that Pt dispersed on the polymer uniformly, and no formation of large cluster was observed. Hydrosilylation using Pt colloids as catalysts have been reported. See:
13a
Stein J.
Lewis LN.
Gao Y.
Scott RA.
J. Am. Chem. Soc.
1999,
121:
3693
13b
Boardman LD.
Organometallics
1992,
11:
4194
13c
Lewis LN.
Lewis N.
Uriarte RJ. In Homogeneous Transition Metal Catalyzed Reactions
Moser WR.
Slocum DW.
Advances in Chemistry Series 230, American Chemical Society;
Washington DC:
1992.
p.541
13d
Lewis LN.
Uriarte RJ.
Lewis N.
J. Mol. Catal.
1991,
66:
105
13e
Lewis LN.
Uriarte RJ.
Organometallics
1990,
9:
621
13f
Lewis LN.
J. Am. Chem. Soc.
1990,
112:
5998
13g
Lewis LN.
Lewis N.
J. Am. Chem. Soc.
1986,
108:
7228
14 The lower detection limit is 5 ppm.
15 The lower detection limit is 0.4 ppm.
16a Wagner GH. inventors; U.S. Patent 2,632,013.
16b Wagner GH. inventors; U.S.Patent; 2,637,738.
16c
Chauhan M.
Hauck BJ.
Keller LP.
Boudjouk P.
J. Organomet. Chem.
2002,
645:
1
17
Fink W.
Helv. Chim. Acta
1971,
54:
1304
18
Sabouraut N.
Mignani G.
Wagner A.
Mioskowski C.
Org. Lett.
2002,
4:
2117
19a
Marciniec B.
Gulinski J.
Urbaniak W.
Nowicka T.
Mirecki J.
Appl. Organomet. Chem.
1990,
4:
27
19b
Ryan JW.
Speier JL.
J. Org. Chem.
1966,
31:
2698
19c
Coy DH.
Fitton F.
Haszeldine RN.
Newslands MJ.
Tipping AE.
J. Chem. Soc., Dalton Trans.
1974,
1852
Hydrosilylation of a symmetrical internal alkyne to give a cis -isomer is reported. See:
20a
Green M.
Spencer JL.
Stone FGA.
Tsipis CA.
J. Chem. Soc., Dalton Trans.
1977,
1525
20b
Tsipis CA.
J. Organomet. Chem.
1980,
427:
187
20c
Chauhn M.
Hauck BJ.
Keller LP.
Boudjouk P.
J. Organomet. Chem.
2002,
645:
1
21 The reaction using pentamethyldisiloxane gave the hydrosilylation product in 69% yield (6 :7 = 85:15), while diethoxymethylsilane also gave a similar result (60% yield, 6 :7 = 85:15).