Subscribe to RSS
DOI: 10.1055/s-2005-868505
Efficient Synthesis of (+)-Kalafungin and (-)-Nanaomycin D by Asymmetric Dihydroxylation, Oxa-Pictet-Spengler Cyclization, and H2SO4-Mediated Isomerization
Publication History
Publication Date:
03 May 2005 (online)
Abstract
The pyranonaphthoquinone antibiotics and antitumor agents (+)-kalafungin (1) and (-)-nanaomycin D (3 = ent-1) were synthesized from 1,5-napthalenediol (13) in 11 steps. Stereocontrol was high: 99.5 ee/93% diastereoselectivity for 1, 98.5% ee/94% diastereoselectivity for 3. Enantiocontrol was achieved by the asymmetric dihydroxylation of the β,γ-unsaturated ester 9. Diastereocontrol was realized in the final step by an almost complete epimerization in H2SO4.
Key words
β,γ-unsaturated carboxylic esters - butyrolactones - epimerization - quinones - pyranonaphthoquinones
-
1a
Krohn K. Tetrahedron 1990, 46: 291 -
1b
Thomson RH. In The Total Synthesis of Natural Products Vol. 8:Apsimon J. Wiley; New York: 1992. p.311 -
1c
Naturally Occurring Quinones
Vol. 4:
Thomson RH. Blackie; Glasgow U.K.: 1996. - The synthesis of quinones has been a topic of considerable and continuing interest:
-
1d
Tisler M. Adv. Heterocycl. Chem. 1989, 45: 37 -
1e
Kutyrev AA. Tetrahedron 1991, 47: 8043 -
1f
Akai S.Kita Y. Org. Prep. Proced. Int. 1998, 30: 603 -
1g
Gallagher PT. Contemp. Org. Synth. 1996, 3: 433 -
2a
Bergy ME. J. Antibiot. 1968, 21: 454 -
2b
Hoeksema H.Krueger WC. J. Antibiot. 1976, 29: 704 - 3
Iwai Y.Kora A.Takahashi Y.Hayashi T.Awaya J.Masuma R.Oiwa R.Omura S. J. Antibiot. 1978, 31: 959 - 4
Omura S.Tanaka H.Okada Y.Marumo H. J. Chem. Soc., Chem. Commun. 1976, 320 -
5a
Omura S.Tanaka H.Koyama Y.Oiwa R.Katagiri M.Awaya J.Nagai T.Hata T. J. Antibiot. 1974, 27: 363 -
5b
Tanaka H.Koyama Y.Nagai T.Marumo H.Omura S. J. Antibiot. 1975, 28: 868 - Original structure:
-
6a
Takano S.Hasuda K.Ito A.Koide Y.Ishii F.Hanada I.Chihara S.Koyami T. J. Antibiot. 1976, 29: 765 -
6b
Ogura H.Furuhata K. 9th International Congress of Heterocyclic Chemistry Tokyo: August 1983, Abstr. S-IV-&: 114 -
6c Revised structure:
Leo P.-M.Morin C.Philouze C. Org. Lett. 2002, 4: 2711 - 7
Keller-Schlierlein W.Brufani M.Barcza S. Helv. Chim. Acta 1968, 51: 1257 - Reviews:
-
8a
Brimble AM. Pure Appl. Chem. 2000, 72: 1635 -
8b
Brimble AM.Nairn MR.Prabaharan H. Tetrahedron 2000, 56: 1937 - 9
Moore HW. Science 1977, 197: 527 -
10a
Kraus GA.Roth B. J. Org. Chem. 1978, 43: 4923 -
10b
Li T.Ellison RH. J. Am. Chem. Soc. 1978, 100: 6263 -
10c
Kraus GA.Cho H.Crowley S.Roth B.Sugimoto H.Prugh S. J. Org. Chem. 1983, 48: 3439 -
10d
Foland LD.Decker OHW.Moore HW. J. Am. Chem. Soc. 1989, 111: 989 -
10e
Brimble MA.Stuart SJ. J. Chem. Soc., Perkin Trans. 1 1990, 881 -
10f
Kraus GA.Li J.Gordon MS.Jensen JH. J. Org. Chem. 1995, 60: 1154 - Syntheses of 1 and 3:
-
11a Short communication:
Tatsuta K.Akimoto K.Annaka M.Ohno Y.Kinoshita M. J. Antibiot. 1985, 38: 680 -
11b Full paper:
Tatsuta K.Akimoto K.Annaka M.Ohno Y.Kinoshita M. Bull. Chem. Soc. Jpn. 1985, 58: 1699 - Synthesis of 3:
-
11c
Winters MP.Stranberg M.Moore HW. J. Org. Chem. 1994, 59: 7572 - Reviews:
-
12a
Lohray BB. Tetrahedron: Asymmetry 1992, 3: 1317 -
12b
Johnson RA.Sharpless KB. Asymmetric Catalysis in Organic SynthesisOjima I. VCH; New York: 1993. p.227 -
12c
Kolb HC.VanNieuwenhze MS.Sharpless KB. Chem. Rev. 1994, 94: 2483 -
12d
Bolm C.Hildebrand JP.Muniz K. In Catalytic Asymmetric Synthesis 2nd ed.:Ojima I. Wiley-VCH; New York: 2000. p.399 -
13a
Harcken C.Brückner R. Angew. Chem., Int. Ed. Engl. 1997, 36: 2750 ; Angew. Chem. 1997, 109, 2866 -
13b
Harcken C.Brückner R.Rank E. Chem.-Eur. J. 1998, 4: 2342 ; corrigendum: Harcken, C.; Brückner, R.; Rank, E. Chem.-Eur. J. 1998, 4, 2390 -
13c
Berkenbusch T.Brückner R. Tetrahedron 1998, 54: 11461 -
13d
Berkenbusch T.Brückner R. Tetrahedron 1998, 54: 11471 -
13e
Harcken C.Brückner R. New J. Chem. 2001, 25: 40 -
13f
Harcken C.Brückner R. Synlett 2001, 718 -
13g
Harcken C.Brückner R. Tetrahedron Lett. 2001, 42: 3967 -
13h
Kapferer T.Brückner R.Herzig A.König WA. Chem.-Eur. J. 2005, 11: 2154 - Method:
-
14a Using 8a:
Ragoussis N. Tetrahedron Lett. 1987, 28: 93 -
14b Using 8a or 8b:
Yamanaka H.Yokoyama M.Sakamoto T.Shiraishi T.Sagi M.Mizugaki M. Heterocycles 1983, 20: 1541 -
15a Arndt-Eistert homologation of α,β-unsaturated carboxylic chlorides:
Moore JA. J. Org. Chem. 1955, 20: 1607 -
15b Syntheses of α,β-unsaturated diazoketones from α,β-unsaturated carboxylic chlorides:
Berenbom M.Fones WS. J. Org. Chem. 1949, 14: 1629 -
15c
Ceccherelli P.Curini M.Marcotullio MC.Rosati O. J. Org. Chem. 1990, 55: 311 -
15d
Checcherelli P.Curini M.Marcotullio MC.Rosati O.Wenkert E. J. Org. Chem. 1991, 56: 7065 -
15e
Prestwich GD.Ujváry I. J. Labelled Comp. Radiopharm. 2002, 2: 37 - 17
Giles RGF.Mitchell PRK.Roos GHP.Strümpfer JMM. J. Chem. Soc., Perkin Trans. 1 1981, 2091 -
18a
Tsuji J.Kiji J.Imamura S.Morikawa M. J. Am. Chem. Soc. 1964, 86: 4350 -
18b
Murahashi S.-I.Imada Y.Taniguchi Y.Higashiura S. J. Org. Chem. 1993, 58: 1538 -
19a
Jung ME.Hagenah JA. J. Org. Chem. 1987, 52: 1889 -
19b
Kitani Y.Morita A.Kumamoto T.Ishikawa T. Helv. Chim. Acta 2002, 85: 1186 - 21
Still WC.Kahn M.Mitra A. J. Org. Chem. 1978, 43: 2923 -
24a
Pyrek JS.Achmatowicz O.Zamojski A. Tetrahedron 1977, 33: 673 -
24b
DeNinno MP.Schoenleber R.Perner RJ.Lijewski L.Asin KE.Britton DR.MacKenzie R.Kebabian JW. J. Med. Chem. 1991, 34: 2561 -
24c
DeNinno MP.Perner RJ.Morton HE.DiDomenico S. J. Org. Chem. 1992, 57: 7115 -
24d
Masquelin T.Hengartner U.Streith J. Synthesis 1995, 780 -
24e
Masquelin T.Hengartner U.Streith J. Helv. Chim. Acta 1997, 80: 43 -
24f
Giles GF.Rickards RW.Senanayake BS. J. Chem. Soc., Perkin Trans. 1 1998, 3949 -
24g
Contant P.Haess M.Riegl J.Scalone M.Visnick M. Synthesis 1999, 821 -
24h
Bianchi DA.Rua F.Kaufman TS. Tetrahedron Lett. 2004, 45: 411 - Seizable fractions of the 5,3a trans,3a,11b cis-isomer accompany 5,3a cis,3a,11b cis-dihydropyran formation only when exposure to acid is longer than required for ring-formation alone:
-
26a
Ref. [24d] reports a dihydropyran annulation using HCl (gaseous) and benzaldehyde; cis,cis:trans,cis ratios were 94:6 after 5 min at -5 °C and 16:84 after 2 h at r.t.
-
26b
Ref. [24g] describes a related dihydropyran generation using HCl and butanal at 25 °C; cis,cis:trans,cis ratios were 84:16 after 3 h and 22:78 after 8 h.
- 29
Brimble AM.Phythian SJ.Prabaharan H. J. Chem. Soc., Perkin Trans. 1 1995, 2855 - H2SO4-mediated epimerizations of lactone-free dihydropyranonaphthoquinones:
-
30a
0:100 trans-23:cis-23 → 67:33 (ref. [10b] );
-
30b 50:50 trans-23:cis-23 → 67:33. See:
Uno H. J. Org. Chem. 1986, 51: 350 -
30c
60:40 trans-24:cis-24 → 80:20 (ref. [24e] ).
-
30d
Related isomerization of the more highly substituted dihydropyranonaphthoquinone 25 (Figure [4] ): see ref. [11b]
References
Kapferer, T.; Brückner, R. unpublished results.
20All new compounds gave satisfactory 1H- and 13C NMR spectra and provided correct combustion analyses (±0.4%).
22Methyl (E)-4-(1,4,5-trimethoxynaphth-2-yl)-3-butenoate (9): NaBr (97.6 mg, 0.948 mmol, 25 mol%), Ph3P (79.6 mg, 0.303 mmol, 8 mol%), Pd2(dba)3CHCl3 (78.5 mg, 0.076 mmol, 2 mol%), and i-Pr2NEt (0.63 mL, 0.49 g, 3.80 mmol) were added sequentially to a solution of allyl acetate 11 (1.200 g, 3.793 mmol) in MeOH (5 mL). The reaction mixture was pressurized with CO (30 atm) in an autoclave and stirred at 50 °C for 6 h before cooling to r.t., quenching with H2O, and extraction with CHCl3 (3 × 20 mL). The combined organic layers were washed twice with H2O, dried (Na2SO4), and concentrated. The residue was purified by flash chromatography using cyclohexane-EtOAc (17:3 → 3:1) as an eluent to give 9 (1.001 g, 83%; 95:5 mixture with the isomeric α,β-unsaturated ester) as a yellow syrup. 1H NMR (500 MHz, CDCl3/TMS): δ = 3.35 (dd, J 2,3 = 7.1 Hz, 4 J 2,4 = 1.5 Hz, 2-H), 3.71 (s, MeO2C), 3.83, 3.93, and 3.96 (3 s, 3 × MeO), 6.40 (dt, J 3,4 = 16.2 Hz, J 3,2 = 7.1 Hz, 3-H), 6.82 (br d, J 6 ′ ,7 ′ = 7.8 Hz, 6¢-H), 6.93 (s, 3¢-H), 6.96 (dt, J 4,3 = 16.2 Hz, 4 J 4,2 = 1.5 Hz, 4-H), 7.38 (dd, J 7 ′ ,6 ′ = J 7 ′ ,8 ′ = 8.1 Hz, 7′-H), 7.68 (dd, J 8 ′ ,7 ′ = 8.4 Hz, 4 J 8 ′ ,6 ′ = 1.1 Hz, 8′-H).
23The enantioselectivities were determined by HPLC. Column: Chiralcel OD-H No. ODHOCE-AJ071; Daicel Chemical Ind. Ltd.; eluent: n-heptane-EtOH (60:40); flow rate; 0.6 mL/min; UV detector: 233 nm; t R: 12.3 min for 10, 14.7 min for ent-10.
25This was inferred from the high-field shifts of the italicized resonances in our 1H NMR spectrum (500 MHz, CDCl3; δ3a-H = 4.37, δ5-H = 5.07, and δ11b-H = 5.59 ppm) relative to the values published (ref.
[11b]
) for the trans,cis-isomer:
δ3a-H = 4.73, δ5-H = 5.37, and δ11b-H = 5.58 ppm. Ref.
[10f]
reports a similar shift difference for the analogous signals of cis,cis-20 (δ values in analogous order: δ = 4.27, 4.84, and 5.33 ppm) vs. trans,cis-20 (δ values in analogous order: δ = 4.61, 4.96, and 5.33 ppm). See Figure
[2]
.
CAN oxidation of the C-5 epimer of ent-17. See ref. [11b]
28The mechanism of the Lewis acid (BBr3)- or Brønsted acid (H2SO4)-mediated epimerization at C-5 of dihydropyranonaphthoquinones 18, 5-epi-1, and their enantiomers has not been investigated. We assume that neither C5-Ar nor C5-O bond cleavage but enone → dienol (as exemplified by formulas 21 and/or 22) tautomerism causes the configurational change. See Figure [3] .
31[α]D 20 +160.6 (c 0.3, CHCl3); mp 168-170 °C. Ref. [11b] [α]D 24 +160 (c 0.3, CHCl3); mp 171-173 °C.
32[α]D 20 -159.7 (c 0.35, CHCl3); mp 169-171°C. Ref. [11b] [α]D 24 -163 (c 0.44, CHCl3); mp 171-173 °C.