Subscribe to RSS
DOI: 10.1055/s-2005-869903
Resolution of Enantiomers by Non-Conventional Methods
Publication History
Publication Date:
18 May 2005 (online)
Abstract
Despite unprecedented advances in enantioselective synthesis and separation techniques, large scale production of enantiopure substances, such as required by the pharmaceutical and pesticide industries, is still heavily dependent upon the separation of diastereomers obtained from the enantiomers and an optically active resolving agent. Economy of the process can be much enhanced when only a half-equivalent of the resolving agent is used. Substitution of the other half-equivalent by some achiral compound, as well as separation of the unreacted portion of the substrate from the diastereomer by various physical methods, is discussed. Methods for selecting optimal conditions of resolution and for the purification of partially resolved mixtures are also discussed.
-
1 Introduction and Historical Background
-
2 Resolution Methods Using a Half-Equivalent of Resolving Agent
-
3 Selection of the Optimal Resolving Agent and Solvent
-
4 Phase Transformations of Diastereomeric Salts or Complexes (Kinetic and Thermodynamic Control)
-
5 Resolution by Formation of Covalently Bound Diastereomers
-
6 Racemization of an Unwanted Enantiomer
-
7 Deracemization
-
8 Resolution of Conglomerate-Forming Racemates by Induced Crystallization
-
9 Purification of Partially Resolved Mixtures by Crystallization of Conglomerate-Forming and Racemic-Phase-Forming Compounds
-
10 Purification of a Partially Resolved Mixture of Racemic-Phase-Forming Enantiomers by Fractional Precipitation
-
11 Resolution by Supercritical Fluid Extraction or Distillation
-
12 The Non-Linear Character of the Resolution Processes
Key words
resolution of enantiomers - half-equivalent methods - choice of optimal conditions
-
2a
Stereoselective Synthesis, In Houben-Weyl Methods of Organic Synthesis
Vol. E21a-E21f:
Helmchen G.Hoffmann RW.Mulzer J.Schaumann EG. Georg Thieme Verlag; Stuttgart, New York: 1996. -
2b
Stereoselective Synthesis, A Practical Approach
Nógrádi M. VCH; Weinheim: 1995. - 4
Pasteur L. C. R. Hebd. Seances Acad. Sci. 1853, 37: 162 - 5
Pope WJ.Peachey SJ. J. Chem. Soc. 1899, 75: 1066 -
6a inventors; Hung. Patent 146896.
, Chem. Abstr.
1958, 54, 11287
-
6b inventors; Hung. Patent 163526.
, Chem. Abstr.
1984, 79, 104924
- 7 inventors; Hung. Patent 177583.
, Chem. Abstr.
1978, 96, 6258
- 8 inventors; Ger. Patent 1274586.
, Chem. Abstr.
1968, 71, 50521
- 9
Cai D.Hughes DL.Verhoeven TR.Reider PJ. In Organic Syntheses, Vol. 76Martin SF. John Wiley & Sons; New York: 1998. p.1 - 10
Brandt J.Gais H.-J. Tetrahedron: Asymmetry 1997, 8: 909 - 11a inventors; Hung. Patent 178516. , Chem. Abstr. 1978, 97, 38959
-
11b
Fogassy E.Ács M.Tóth G.Simon K.Láng T.Ladányi L.Párkányi L. J. Mol. Struct. 147, 143 - 12a inventors; Hung. Patent 169845. , Chem. Abstr. 1974, 85, 192335
-
12b
Ács M.Kozma D.Fogassy E. Ach. Mod. Chem. 1995, 132: 475 - 13
Rábay J. Angew. Chem., Int. Ed. Engl. 1992, 31: 1631 - 14
Fogassy E.Ács M.Szili T.Simándi B.Sawinsky J. Tetrahedron Lett. 1994, 35: 257 - 15
Simon H. Ph.D. Dissertation Technical University, Budapest; Hungary: 2003. - 16
Tanaka K.Kato M.Toda F. Heterocycles 2001, 54: 405 - 17
Kobayashi Y.Kodama K.Saigo K. Org. Lett. 2004, 6: 2941 - 18
Kassai Cs. Ph.D. Dissertation Technical University, Budapest; Hungary: 2000. - 19
Ács M.Mravik A.Fogassy E.Böcskei Zs. Chirality 1994, 6: 314 -
20a
Optical Resolutions via Diastereomeric Salt Formation
Kozma D. CRC Press; London: 2002. -
20b
Faigl F.Kozma D. In Enantiomer Separation: Fundamentals and Practical MethodsToda F. Kluwer Academic Press; Dordrecht: 2004. - 21
Kozsda KE.Keserž Gy.Böcskei Zs.Szilágyi J.Simon K.Bertók B.Fogassy E. J. Chem. Soc., Perkin Trans. 2 2000, 149 -
22a inventors; Hung. Patent 214720.
, Chem. Abstr.
1995, 124, 117097
-
22b inventors; US Patent 02133894.
, Chem. Abstr.
2001, 139, 90595
- 23
Bálint J.Egri G.Kiss V.Gajáry A.Juvancz Z.Fogassy E. Tetrahedron: Asymmetry 2001, 12: 3435 - 24
Sakai K.Sakurai R.Hirayama N. Tetrahedron: Asymmetry 2004, 15: 1073 - 25
Sakai K.Sakurai R.Yuzawa A.Hirayama N. Tetrahedron: Asymmetry 2003, 14: 3713 - 26
Sakai K.Sakurai R.Nohira H.Tanaka R.Hirayama N. Tetrahedron: Asymmetry 2004, 15: 3495 - 27
Schanz HJ.Linseis MA.Gilheany DG. Tetrahedron: Asymmetry 2003, 14: 2767 - 28
Sakai K.Sakurai R.Yuzawa A.Kobayashi Y.Saigo K. Tetrahedron: Asymmetry 2003, 14: 1631 -
29a
Fogassy E.Lopata A.Faigl F.Ács M.Darvas F.Tőke L. Tetrahedron Lett. 1980, 21: 647 -
29b
Fogassy E.Faigl F.Ács M.Grofcsik A. J. Chem. Res., Synop. 1981, 11: 346 ; J. Chem. Res., Miniprint 1981, 11, 3981 -
29c
Fogassy E.Faigl F.Ács M. Tetrahedron 1985, 41: 2837 - 30
Kozma D.Pokol G.Ács M. J. Chem. Soc., Perkin Trans. 2 1992, 435 - 31
Fogassy E.Kozma D. Tetrahedron Lett. 1995, 36: 5069 - 32
Bálint J.Egri G.Vass G.Schindler J.Gajáry A.Friesz A.Fogassy E. Tetrahedron: Asymmetry 2000, 11: 809 - 33 inventors; Hung. Patent 193199.
, Chem. Abstr.
1984, 104, 168835
- 34
Gizur T.Péter I.Harsányi K.Fogassy E. Tetrahedron: Asymmetry 1996, 7: 1589 - 35
Kaptein B.Elsenberg H.Grimbergen RFP.Broxterman QB.Hulshof LA.Vries T. Tetrahedron: Asymmetry 2000, 11: 1343 - 36
Vries T.Wynberg H.van Echten E.Kock J.ten Hoeve W.Kellogg RM.Broxterman QB.Minnard A.Kaptein B.van der Sluis S.Hulshof LA. Angew. Chem. Int. Ed. 1998, 37: 2349 - 37
Kellogg RM.Nieuwenhuijzen WJ.Pouwer K.Vries T.Broxterman QB.Grimbergen RFP.Kaptein B.La Crois RM.de Wever E.Zwaagstra K.van der Laan A. Synthesis 2003, 1626 - 38
Liu A.Mok KF.Leung PH. Chem. Commun. 1997, 2397 - 39
Mravik A. Chem. Eur. J. 1998, 4: 1621 - 40
Várkonyi SE.Takács K.Hermecz I. J. Heterocycl. Chem. 1997, 34: 1064 - 41
Robinson DEJE.Bull SD. Tetrahedron: Asymmetry 2003, 14: 1407 - 42
Eames I. Angew. Chem. Int. Ed. 2000, 39: 885 - 43 inventors; Hung. Patent 195174.
, Chem. Abstr.
1984, 102, 61849
- 44
Tsunoda T.Kaku H.Nagaku M.Okuyama E. Tetrahedron Lett. 1997, 38: 7759 - 45
Enantiomers, Racemates and Resolutions
Jacques J.Collet A.Wilen SH. Wiley; New York: 1981. - 46
Stereochemistry of Organic Compounds
Eliel EL.Wilen SH. Wiley; New York: 1994. - 47
Pasteur L. Ann. Chim. Phys. 1848, 24: 442 - 48
Mravik A.Lepp Zs.Fogassy E. Tetrahedron: Asymmetry 1996, 718: 2387 -
49a
Pincock RE.Wilson KR. J. Am. Chem. Soc. 1971, 93: 1291 -
49b
Kondepudi DK.Laudadio J.Asakura K. J. Am. Chem. Soc. 1999, 121: 1448 - 50a inventors; Hung. Patent 179452. , Chem. Abstr. 1978, 97, 6331
-
50b
Fogassy E.Ács M.Tóth G.Simon K.Láng T.Ladányi L.Párkányi L. J. Mol. Struct. 1986, 147: 143 - 51
Dolchi C.Fumagalli L.Moroni B.Pallavicini M.Valoti E. Tetrahedron: Asymmetry 2003, 14: 3779 - 52
Tamura R.Fujimoto D.Lepp Z.Misaki K.Miura H.Takahasi H.Ushio T.Nakai T.Hirotsu K. J. Am. Chem. Soc. 2002, 124: 13139 - 53a inventors; Hung. Patent 181416. , Chem. Abstr. 1979, 99, 22300
-
53b
Ács M.Pokol Gy.Faigl F.Fogassy E. J. Therm. Anal. 1988, 33: 1241 - 54
Ács M.Fogassy E.Faigl F.Tomor K.Simon K.Marsó K. Mol. Cryst. Liq. Cryst. 1988, 156: 193 - 55
Simon H.Kassai Cs.Madarász Z.Fogassy E.Kozma D. Chirality 2001, 13: 29 - 56
Noyori R. J. Am. Chem. Soc. 1995, 117: 2675 - 57
Girard C.Kagan HB. Angew. Chem. Int. Ed. 1998, 37: 2922 ; Angew. Chem. 1998, 110, 3088 - 58
Kozma D.Fogassy E. Mol. Cryst. Liq. Cryst. 1996, 276: 25 - 59
Markovits I.Egri G.Fogassy E. Chirality 2002, 14: 674 -
60a
Kozma D.Madarász Z.Ács M.Fogassy E. Chirality 1995, 7: 381 -
60b
Kozma D.Simon H.Kassai Cs.Madarász Z.Fogassy E. Chirality 2001, 13: 29
References
Present-day nomenclature will be used throughout this review.
3Catalog prices, 2004: (R)-1,1′-binaphthol: ı 44/g; (R)-2,2′-bis(diphenylphosphino)-1,1′-binaphthalene (BINAP): ı 335/g; (-)-α-pinene: ı 12/g; (+)-α-pinene: ı 13/g; (+)-1,4-bis(diphenylphospino)-1,4-dideoxy-2,3-O-isopropylidene-d-threitol [(+)-DIOP]: ı 118/g; (R,R)-tartaric acid: ı 46/100 g; (S,S)-tartaric acid: ı 70/100 g; dibenzoyl-(R,R)-tartaric acid: ı 81/100 g; (S)-lactic acid: ı 33/kg; (R)-1-phenylethylamine: ı 82/100 mL; (R)-1-phenylethylamine: ı 84/100 g; brucine hydrate: ı 83/100 g; quinine: ı112/100 g.