References
1a
Kido H.
Fukussen N.
Ishidoh K.
Katunuma N.
Biochem. Biophys. Res. Commun.
1986,
138:
275
1b
Siegel DP.
Banschbach J.
Alford D.
Ellens H.
Lis LJ.
Quinn PJ.
Yeagle PL.
Bentz J.
Biochemistry
1989,
28:
3703
2
Iwasaki Y.
Yamane T.
J. Mol. Catal. B: Enzym.
2000,
10:
129
3
Lambert DM.
Neuvens L.
Mergen F.
Gallez B.
Poupaert JH.
Ghyselburton J.
Maloteaux JM.
Dumont P.
J. Pharm. Pharmacol.
1993,
45:
186
4a
Paris GY.
Garmaise DL.
Cimon DG.
Swett L.
Carter GW.
Young P.
J. Med. Chem.
1980,
23:
9
4b
Paris GY.
Garmaise DL.
Cimon DG.
Swett L.
Carter GW.
Young P.
J. Med. Chem.
1980,
23:
79
4c
Patra A.
Chaudhuri SK.
J. Indian Chem. Soc.
1988,
65:
367
5
Houte H.
Partali V.
Sliwka H.-R.
Quartey EGK.
Chem. Phys. Lipids
2000,
105:
105
6
Naalsund T.
Malterud KE.
Partali V.
Sliwka H.-R.
Chem. Phys. Lipids
2001,
112:
59
7a
Garzon-Aburbeh A.
Poupaert JH.
Claesen M.
Dumont P.
J. Med. Chem.
1986,
29:
687
7b
Garzon-Aburbeh A.
Poupaert JH.
Claesen M.
Dumont P.
Atassi G.
J. Med. Chem.
1983,
26:
1200
8a
Gallez B.
Demeure R.
Debuyst R.
Leonard D.
Dejehet F.
Dumont P.
Magn. Reson. Imaging
1992,
10:
445
8b
Weichert JP.
Longino MA.
Bakan DA.
Spigarelli MG.
Chou T.
Schwendner SW.
Counsell RE.
J. Med. Chem.
1995,
38:
636
9
Waldinger C.
Schneider M.
J. Am. Oil Chem. Soc.
1996,
73:
1513
10a
Rose WG.
J. Am. Chem. Soc.
1947,
69:
1384
10b
Mattson FH.
Volpenhein RA.
J. Lipid Res.
1962,
3:
281
10c
Bentley PH.
McCrae W.
J. Org. Chem.
1970,
35:
2082
10d
Nuhn P.
Brezesinski G.
Dobner B.
Forster G.
Gutheil M.
Dorfler H.
Chem. Phys. Lipids
1986,
39:
221
10e
Ikeda I.
Gu XP.
Miyamoto I.
Okahara M.
J. Am. Oil Chem. Soc.
1989,
66:
822
10f
Gaffney PRJ.
Reese CB.
Tetrahedron Lett.
1997,
38:
2539
11a
Lee K.-T.
Akoh CC.
Food Rev. Int.
1998,
14:
17
11b
Sonnet PE.
Chem. Phys. Lipids
1991,
58:
35
12a
deHaas GH.
vanDeenen LM.
Biochim. Biophys. Acta
1964,
84:
469
12b
vanDeenen LM.
deHaas GH.
Biochim. Biophys. Acta
1963,
70:
538
13
Haftendorn R.
Schwarze G.
Ulbrich-Hofmann R.
Chem. Phys. Lipids
2000,
104:
57
14a
Kunitake T.
Okahata Y.
Tawaki SI.
J. Colloid Interface Sci.
1984,
103:
190
14b
Frense D.
Haftendorn R.
Ulbrich-Hofmann R.
Chem. Phys. Lipids
1995,
78:
81
15
Lok CM.
Ward JP.
vanDorp DA.
Chem. Phys. Lipids
1976,
16:
115
16a
Lok CM.
Mank APJ.
Ward JP.
Chem. Phys. Lipids
1985,
36:
329
16b
Mank APJ.
Ward JP.
VanDorp DA.
Chem. Phys. Lipids
1976,
16:
107
17
deGroot WTM.
Lok CM.
Ward JP.
Chem. Phys. Lipids
1988,
47:
75
18a
Jensen RG.
Ferraina RA.
J. Am. Oil Chem. Soc.
1989,
65:
135
18b
Pollack JD.
Clark DS.
Somerson NL.
J. Lipid Res.
1971,
12:
563
19
Froling A.
Pabon HJJ.
Ward JP.
Chem. Phys. Lipids
1984,
36:
29
20
Hartman L.
Chem. Rev.
1958,
58:
845
21
Han S.-Y.
Cho S.-H.
Kim S.-Y.
Seo J.-T.
Moon S.-J.
Jhon G.-J.
Bioorg. Med. Chem. Lett.
1999,
9:
59
22
Dodd GH.
Golding BT.
Ioannou PV.
J. Chem. Soc., Chem. Commun.
1975,
249
23a
Boswinkel G.
Derksen JTP.
Riet Kvt.
Cuperus FP.
J. Am. Oil Chem. Soc.
1996,
73:
707
23b
Martin JB.
J. Am. Chem. Soc.
1953,
75:
5483
23c
Murgia S.
Caboi F.
Monduzzi M.
Ljusberg-Wahren H.
Nylander T.
Prog. Colloid Polym. Sci.
2002,
120:
41
23d
Serdarevich B.
J. Am. Oil Chem. Soc.
1967,
44:
381
23e
Sjursnes BJ.
Anthonsen B.
Biocatalysis
1994,
9:
285
23f
Sonnett PE.
Dudley RL.
Chem. Phys. Lipids
1994,
72:
185
23g
Paltauf F.
Hermetter A.
Prog. Lipid Res.
1994,
33:
239
24
Lalonde M.
Chan TH.
Synthesis
1985,
817
25
Burgos CE.
Ayer DE.
Johnson RA.
J. Org. Chem.
1987,
52:
4973
26
Xia J.
Hui Y.-Z.
Tetrahedron: Asymmetry
1997,
8:
3131
27
Leung W.-H.
Wong TKT.
Tran JCH.
Yeung L.-L.
Synlett
2000,
677
28a
Zhang W.
Robins MJ.
Tetrahedron Lett.
1992,
33:
1177
28b
Bajwa JS.
Vivelo J.
Slade J.
Repic O.
Blacklock T.
Tetrahedron Lett.
2000,
41:
6021
29a
Ganem B.
Small VRJ.
J. Org. Chem.
1974,
39:
3728
29b
Danishefsky SJ.
Mantlo N.
J. Am. Chem. Soc.
1988,
110:
8129
30
Fuchs E.-F.
Lehmann J.
Chem. Ber.
1974,
107:
721
31
Kim S.
Lee WJ.
Synth. Commun.
1986,
16:
659
32
Oriyama T.
Oda M.
Gono J.
Koga G.
Tetrahedron Lett.
1994,
35:
2027
33
General Procedure for the Synthesis of Trichloro-acetylated Synthon 2 (Step A).
1-Oleoyl-3-O-tert-butyldimethylsilyl-sn-glycerol (1, 0.857 g, 1.82 mmol) and pyridine (2.91 mL, 36.0 mmol) in alcohol-free CHCl3 (10.0 mL), was treated with a solution of trichloroacetyl chloride (0.306 mL, 2.73 mmol) in alcohol-free CHCl3 (10.0 mL), at -20 °C and the reaction mixture was kept at r.t. for 2 h. Solvents were removed under reduced pressure and the thus obtained unsymmetrical diester 2 was isolated in pure state (>99%, 1H NMR spectroscopy) by flash column chromatography (silica gel, mobile phase: toluene).
Compound 2: yield 1.065 g (95%, colourless oil); R
f
= 0.70 (pentane-toluene-EtOAc = 40:50:10, v/v/v); [α]D
20 +11.87 (c, 10.26; CHCl3). Anal. Calcd for C29H53Cl3O5Si (616.17): C, 56.53; H, 8.67; Cl, 17.26%. Found: C, 56.67; H, 8.60; Cl, 17.30.
34
General Procedure for the Preparation of Triester Congeners of 1,3-DAG 3, 4 (Step B).
To a solution of silyl ether 2 (0.616 g 1.00 mmol) and tetra-n-butylammonium bromide (0.645 g, 2.00 mmol) in alcohol-free CHCl3 (3.0 mL), a mixture of the selected carboxylic acid anhydride (3.00 mmol) and trimethylbromosilane (0.195 mL, 1.50 mmol) in the same solvent (3.0 mL) was added and the reaction system was kept under argon, in a pressure-proof glass ampoule at 80 °C(bath) for 2 h. Then, CHCl3 was removed under reduced pressure and the triglyceride 3 or 4 was isolated in pure state (purity >99%, 1H NMR spectroscopy) by flash column chromatography (silica gel, mobile phase: toluene-EtOAc = 98:2, v/v).
Compound 3 (obtained from 2 and Ac2O: 0.284 mL, 3.00 mmol). Yield 0.511 g (94%, colourless oil); R
f
(pentane-toluene-EtOAc = 40:50:10, v/v/v) = 0.49; [α]D
20 -0.68 (c, 9.77; CHCl3). Anal. Calcd for C25H41Cl3O6 (543.95): C, 55.20; H, 7.60; Cl, 19.55%. Found: C, 55.30; H, 7.55; Cl, 19.47.
Compound 4 (obtained from 2 and palmitic anhydride: 1.484 g, 3.00 mmol). Yield 0.711 g (96%, colourless oil); R
f
= 0.58 (pentane-toluene-EtOAc = 40:50:10, v/v/v); [α]D
20 0.00 (c, 4.26; CHCl3). Anal. Calcd for C39H69Cl3O6 (740.32): C, 63.27; H, 9.39; Cl, 14.37%. Found: C, 63.35; H, 9.50; Cl, 14.30.
35
General Procedure for the Preparation of 1,3-Diacyl-glycerols 5, 6 (Step C).
To a solution of 3 or 4 (1.00 mmol) in THF (5.0 mL), a mixture of pyridine (4.0 mL, 50 mmol) and MeOH (20.3 mL, 500 mmol) was added and the reaction system was left at r.t. for 2 h. Solvents were evaporated under reduced pressure (bath temperature 50 °C) and the residue was kept under high vacuum at r.t. for 2-3 h to give the unprotected diglyceride 5 and 6 (purity >99%, 1H NMR spectroscopy).
Compound 5 (obtained from 3). Yield 0.398 g (100%, colourless oil); R
f
= 0.29 (toluene-EtOAc = 80:20, v/v); [α]D
20 -0.28 (c, 9.15; CHCl3). Anal. Calcd for C23H42O5 (398.58): C, 69.31; H, 10.62%. Found: C, 69.19; H, 10.70.
Compound 6 (obtained from 4). Yield 0.595 g (100%, white solid, mp 45.5-47.0 °C from pentane, lit.
[15]
mp 45-46 °C); R
f
= 0.52 ( toluene-EtOAc = 80:20, v/v). Anal. Calcd for C37H70O5 (594.95): C, 74.69; H, 11.86%. Found: C, 74.81; H, 11.80.