Subscribe to RSS
DOI: 10.1055/s-2005-917093
Cyclization Reactions of Vinyl Radicals via 1,6-H-Atom Transfer: Facile Access to 2,3-Disubstituted Dihydrobenzofurans
Publication History
Publication Date:
05 October 2005 (online)
Abstract
A new method for the synthesis of 2,3-disubstituted dihydrobenzofurans is reported making use of radical formation via translocation by 1,6-hydrogen atom transfer and subsequent 5-exo-trig cyclization.
Key words
dihydrobenzofurans - radicals - hydrogen transfer - ring-closure - radical reactions
-
1a
Heiba EI.Messau RM. J. Am. Chem. Soc. 1967, 89: 3772 -
1b
Freidlina RK.Terent’ev AB. Acc. Chem. Res. 1977, 10: 9 -
2a
Borthwick AD.Caddick S.Parsons PJ. Tetrahedron Lett. 1990, 31: 6911 -
2b
Lathbury DC.Parsons PJ.Pinto I. J. Chem. Soc., Chem. Commun. 1988, 81 -
2c
Kim S.Koh JS. J. Chem. Soc., Chem. Commun. 1992, 1377 -
2d
Weng W.Luh T. J. Org. Chem. 1993, 58: 5574 -
2e
Bogen S.Journet M.Malacria M. Synlett 1994, 958 -
2f
Gross A.Fensterbank L.Bogen S.Thouvenot R.Malacria M. Tetrahedron 1997, 53: 13797 -
2g
Bogen S.Fensterbank L.Malacria M. J. Am. Chem. Soc. 1997, 119: 5037 -
2h
Stien D.Samy R.Crich D.Bertrand MP. J. Org. Chem. 1997, 62: 275 -
2i
Devin P.Fensterbank L.Malacria M. J. Org. Chem. 1998, 63: 6764 -
2j
Gulea M.Lopez-Romero JM.Fensterbank L.Malacria M. Org. Lett. 2000, 2: 2591 - 3
Snieckus V.Cuevas JC.Sloan CP.Liu H.Curran DP. J. Am. Chem. Soc. 1990, 112: 896 -
4a
Curran DP.Kim D.Liu HT.Shen W. J. Am. Chem. Soc. 1988, 110: 5900 -
4b
Curran DP.Abraham AC.Liu H. J. Org. Chem. 1991, 56: 4335 -
4c
Curran DP.Kim D.Ziegler C. Tetrahedron 1991, 47: 6186 -
4d
Curran DP.Somayajula KV.Yu H. Tetrahedron Lett. 1992, 33: 2295 -
4e
Curran DP.Shen W. J. Am. Chem. Soc. 1993, 115: 6051 -
4f
Curran DP.Xu J.Lazzarini E. J. Am. Chem. Soc. 1995, 117: 6603 -
4g
Curran DP.Xu J. J. Am. Chem. Soc. 1996, 118: 3142 -
4h
Curran DP.Fairweather N. J. Org. Chem. 2003, 68: 2972 -
5a
Curran DP.Yu H. Synthesis 1992, 125 -
5b
Imboden C.Villar F.Renaud P. Org. Lett. 1999, 1: 837 -
6a
Karady S.Abramson NL.Dolling U.Douglas AW.McManemin GJ.Marcune B. J. Am. Chem. Soc. 1995, 117: 5425 -
6b
Cummins JM.Dolling U.Douglas AW.Karady S.Leonard WR.Marcune BF. Tetrahedron Lett. 1999, 40: 6153 -
6c
Karady S.Cummins JM.Dannenberg JJ.Rio E.Dormer PG.Marcune BF.Reamer RA.Sordo TL. Org. Lett. 2003, 5: 1175 -
7a
Carvalho CF.Sargent MV. J. Chem. Soc., Perkin Trans. 1 1984, 1605 -
7b
Ganzalez AG.Barrera JB.Yanes AC.Diaz JG.Rodriguez EM. Phytochemistry 1989, 28: 2520 -
7c
Murray RDH. Nat. Prod. Rep. 1995, 12: 447 -
7d
Walker JA.Rossen K.Reamer RA.Volante RP.Reider PJ. Tetrahedron Lett. 1999, 40: 4917 - Lews acid promoted reactions:
-
8a
Enger TA.Combrink KD.Letavic MA.Lynch KO.Ray JE. J. Org. Chem. 1994, 59: 6567 -
8b
Enger TA.Wei D.Letavic MA.Combrink KD.Reddy JP. J. Org. Chem. 1994, 59: 6588 -
8c
Enger TA.Gfesser GA.Braney BW. J. Org. Chem. 1995, 60: 3700 -
8d
Engler TA.Iyengar R. J. Org. Chem. 1998, 63: 1929 -
8e
Rupprecht KM.Boger J.Hoogsteen K.Nachbar RB.Springer JP. J. Org. Chem. 1991, 56: 6108 - Anionic cyclization:
-
9a
Nakao J.Inoue R.Shinokubo H.Oshima K. J. Org. Chem. 1997, 62: 1910 -
9b
Plotkin M.Chen S.Spoors PG. Tetrahedron Lett. 2000, 41: 2269 -
9c
Kneisel FF.Monguchi Y.Knapp KM.Zipse H.Knochel P. Tetrahedron Lett. 2002, 43: 4875 - Radical reactions:
-
10a
Sloan CP.Cuevas JC.Quesnelle C.Snieckus V. Tetrahedron Lett. 1988, 29: 4685 -
10b
Wolff S.Hoffmann HMR. Synthesis 1988, 760 -
10c
Boger DL.Palanki MSS. J. Am. Chem. Soc. 1992, 114: 9318 -
10d
Boger DL.Yun W.Teegarden BR. J. Org. Chem. 1992, 57: 2873 -
10e
Clive DLJ.Etkin N.Joseph T.Lown JW. J. Org. Chem. 1993, 58: 2442 -
10f
Boisvert G.Giasson R. Tetrahedron Lett. 1992, 33: 6587 -
10g
Rai R.Collum DB. Tetrahedron Lett. 1994, 35: 6221 -
10h
Itoh T.Ohara H.Emoto S. Tetrahedron Lett. 1995, 36: 3531 - Palladium chemistry:
-
11a
Larock RC.Yang H.Pace P. Tetrahedron Lett. 1998, 39: 237 -
11b
Rozhkov RV.Larlock RC. J. Org. Chem. 2003, 68: 6314 -
11c
Zhang H.Ferreira EM.Stoltz BM. Angew. Chem. Int. Ed. 2004, 43: 6144 - Rhodium chemistry:
-
12a
Saito H.Oishi H.Kitagaki S.Nakamura S.Anada M.Hashimoto S. Org. Lett. 2002, 4: 3887 -
12b
Davies HML.Grazini MVA.Aouad E. Org. Lett. 2001, 3: 1475 -
13a
Jezek E.Schall A.Kreitmeier P.Reiser O. Synlett 2005, 915 -
13b
Chhor RB.Nosse B.Sörgel S.Böhm C.Seitz M.Reiser O. Chem.-Eur. J. 2003, 9: 260 -
13c
Nosse B.Chhor RB.Jeong WB.Böhm C.Reiser O. Org. Lett. 2003, 5: 941 -
13d
Böhm C.Reiser O. Org. Lett. 2001, 3: 1315 -
13e
Seitz M.Reiser O. Curr. Opin. Chem. Biol. 2005, 9: 285 - Analysis by NOE and vicinal coupling constants 3 J ( H-2, H-3) in 2,3-dihydrobenzofurans: 3 J cis may be expected to be larger than 3 J trans , see:
-
16a
Brust DP.Tarbell DS.Hecht SM.Hayward EC.Colebrook LD. J. Org. Chem. 1966, 31: 2191 -
16b
Annibali D.Ecker G.Fleischhacker W.Helml T.Hotzer W.Noe CR. Monatsh. Chem. 2000, 131 - 17 For an excellent discussion see:
Curran DP.Porter NA.Giese B. In Stereochemistry of Radical Reactions: Concepts, Guidelines, and Synthetic Applications VCH; Weinheim Germany: 1995. p.30-43 - 18
Curran DP.Chang C.-T. J. Org. Chem. 1989, 54: 3140
References
General Procedure for the Radical Cyclizations of Vinyl Bromides. To a refluxing solution of vinyl bromide (0.5 mmol) and AIBN (11 mg, 0.065 mmol) in benzene (7 mL) was added Bu3SnH (264 µL, 1.0 mmol) and AIBN (11 mg, 0.065 mmol) in 10 mL benzene via a syringe pump within 3 h (3.5 mL/h). After refluxing the reaction mixture for one additional hour, the solvent was removed, and to the residue was added DBU (1.5 mmol) in 10 mL of Et2O to remove the tin halides, followed by titration with 0.1 M iodide solution and filtration of the solution through silica.18 The crude product was purified by column chromatography on silica (EtOAc-hexane in an appropriate ratio) to give the benzofurane product.
15
Representative Spectroscopic Data.
Compound 5c: trans/cis 67:33 (GC); colorless oil. IR (NaCl): 1195, 1496, 1621, 1732, 2982 cm-1. cis-Isomer: 1H NMR (300 MHz, CDCl3): δ = 1.26 (t, 3 H, J = 6.9 Hz, CH3), 2.47-2.63 (m, 2 H, CH2), 3.74 (s, 3 H, CH3), 3.88-3.99 (m, 1 H, CH), 4.18 (q, 2 H, J = 7.2 Hz, CH2), 5.18-5.33 (br, 3 H, CH, CH2), 5.83-5.96 (m, 1 H, CH), 6.68-6.76 (br, 3 H, 3 CH). 13C NMR (300 MHz, CDCl3): δ = 14.2 (CH3), 35.5 (CH2), 41.8 (CH), 55.7 (CH3), 60.7 (CH2), 86.4 (CH), 109.7 (CH), 110.7 (CH), 113.5 (CH), 119.0 (CH2), 130.7 (C), 133.0 (CH), 152.9 (C), 154.3 (C), 172.0 (C). trans-Isomer: 1H NMR (300 MHz, CDCl3): δ = 1.28 (t, 3 H, J = 6.9 Hz, CH3), 2.56-2.76 (m, 2 H, CH2), 3.55-3.61 (m, 1 H, CH), 3.74 (s, 3 H, CH3), 4.18 (q, 2 H, J = 7.2 Hz, CH2), 4.76-4.84 (m, 1 H, CH), 5.30-5.48 (m, 2 H, CH2), 5.91-6.07 (m, 1 H, CH), 6.68-6.76 (br, 3 H, 3 CH). 13C NMR (300 MHz, CDCl3): δ = 14.2 (CH3), 38.9 (CH2), 44.8 (CH), 56.0 (CH3), 60.8 (CH2), 89.1 (CH), 109.7 (CH), 110.8 (CH), 113.7 (CH), 117.1 (CH2), 129.8 (C), 136.5 (CH), 153.1 (C), 154.3 (C), 171.5 (C). MS (EI): m/z (relative intensity) = 262 (97) [M+], 187 (15), 174 (100), 157 (12), 147 (7), 115 (17), 91 (26), 77 (21). HRMS: m/z calcd for C15H18O4 [M+]: 262.1205; found: 262.1207. Anal. Calcd for C15H18O4: C, 68.68; H, 6.92. Found: C, 68.45; H, 6.41.
Compound cis-13: colorless oil. IR (NaCl): 1197, 1477, 1597, 1734, 2982 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.27 (t, 3 H, J = 7.2 Hz, CH3), 1.30 (t, 3 H, J = 7.2 Hz, CH3), 2.55-2.70 (m, 2 H, CH2), 4.10-4.36 (br, 5 H, CH, 2 CH2), 5.27 (d, 1 H, J = 9.0 Hz, CH), 6.84-6.94 (br, 2 H, 2 CH), 7.10-7.21 (br, 2 H, 2 CH). 13C NMR (300 MHz, CDCl3): δ = 14.2 (2 CH3), 35.8 (CH2), 40.8 (CH), 60.9 (CH2), 61.5 (CH2), 82.5 (CH), 110.1 (CH), 121.4 (CH), 124.3 (CH), 128.0 (C), 129.1 (CH), 158.7 (C), 169.1 (C), 171.2 (C). MS (EI): m/z (relative intensity) = 278 (20) [M+], 232 (8), 204 (49), 191 (48), 131 (100), 118 (17), 91 (9), 77 (10). HRMS: m/z calcd for C15H18O5 [M+]: 278.1154; found: 278.1156.
Compound trans-13: colorless oil. IR (NaCl): 1197, 1477, 1597, 1734, 2982 cm-1. 1H NMR (300 MHz, CDCl3): δ = 1.26 (t, 3 H, J = 7.2 Hz, CH3), 1.30 (t, 3 H, J = 7.2 Hz, CH3), 2.73-2.80 (m, 2 H, CH2), 3.98-4.10 (m, 1 H, CH), 4.18 (t, 2 H, J = 7.2 Hz, CH2), 4.27 (t, 2 H, J = 7.2 Hz, CH2), 4.93 (d, 1 H, J = 5.7 Hz, CH), 6.86-6.95 (br, 2 H, 2 CH), 7.12-7.22 (br, 2 H, 2CH). 13C NMR (300 MHz, CDCl3): δ = 14.2 (2 CH3), 39.7 (CH2), 42.9 (CH), 60.9 (CH2), 61.7 (CH2), 84.1 (CH), 110.1 (CH), 121.4 (CH), 124.3 (CH), 127.6 (C), 129.1 (CH), 158.8 (C), 170.5 (C), 171.0 (C). MS (EI): m/z (relative intensity) = 278 (7) [M+], 232 (10), 204 (23), 191 (98), 131 (100), 118 (19), 91 (12), 77 (12). HRMS: m/z calcd for C15H18O5 [M+]: 278.1154; found: 278.1153.