Subscribe to RSS
DOI: 10.1055/s-2005-923585
Electrochemical Generation and Catalytic Use of Selenium Electrophiles
Publication History
Publication Date:
23 December 2005 (online)
Abstract
The generation and use of selenium electrophiles in catalytic, electrochemically driven selenenylation-elimination sequences is described.
Key words
electrochemistry - electrophilic addition - elimination - selenium - stereoselective synthesis
- 1
Organoselenium Chemistry, In Top. Curr. Chem.
Vol. 208:
Wirth T. Springer; Berlin: 2000. -
2a
Wirth T. Angew. Chem. Int. Ed. 2000, 39: 3742 -
2b
Tiecco M. Top. Curr. Chem. 2000, 208: 55 -
3a
Uehlin L.Wirth T. Chimia 2001, 55: 65 -
3b
Uehlin L.Wirth T. Org. Lett. 2001, 3: 189 - 4
Wirth T.Häuptli S.Leuenberger M. Tetrahedron: Asymmetry 1998, 9: 547 -
5a
Iwaoka M.Tomoda S. J. Chem. Soc., Chem. Commun. 1992, 1165 -
5b
Fujita K.Iwaoka M.Tomoda S. Chem. Lett. 1994, 923 -
5c
Fukuzawa S.Takahashi K.Kato H.Yamazaki H. J. Org. Chem. 1997, 62: 7711 -
5d
Tiecco M.Testaferri L.Santi C.Tomassini C.Marini F.Bagnoli L.Temperini A. Tetrahedron: Asymmetry 2000, 11: 4645 -
5e
Tiecco M.Testaferri L.Santi C.Tomassini C.Marini F.Bagnoli L.Temperini A. Chem.-Eur. J. 2002, 8: 1118 -
5f
Nishibayashi Y.Uemura S. Top. Curr. Chem. 2000, 208: 201 -
6a
Inokuchi T.Kusomoto M.Torii S. J. Org. Chem. 1990, 55: 1548 -
6b
Suriwiec K.Fuchigami T. J. Org. Chem. 1992, 57: 5781 -
6c
Smith DS.Winnick J.Ding Y.Bottomley L. Electrochim. Acta 1998, 43: 335 -
7a
Torii S.Uneyama K.Ono M. Tetrahedron Lett. 1980, 21: 2653 -
7b
Torii S.Uneyama K.Handa K. Tetrahedron Lett. 1980, 21: 1863 -
7c
Bewick A.Coe DE.Fuller GB.Mellor JM. Tetrahedron Lett. 1980, 21: 3827 -
7d
Torii S.Uneyama K.Takano K. Tetrahedron Lett. 1982, 23: 1161 -
7e
Konstantinovic S.Vukicevic R.Mihailovic ML. Tetrahedron Lett. 1987, 28: 6511 - 8
Torii S.Uneyama K.Ono M. J. Am. Chem. Soc. 1981, 103: 4606 - 9
Hoye TR.Richardson WS. J. Org. Chem. 1989, 54: 668 - 11
Pak CS.Lee E.Lee GH. J. Org. Chem. 1993, 58: 1523 - Diselenides 8 were synthesized according to literature procedures:
-
15a Compounds 8a,c:
Wirth T.Fragale G. Chem.-Eur. J. 1997, 3: 1894 -
15b Compound 8b:
Uehlin L.Fragale G.Wirth T. Chem.-Eur. J. 2002, 8: 1125 -
15c
For compound 8d see ref. 5e.
- 16 Prepared by reaction of phenyl acetaldehyde and cyanoacetic acid. Spectroscopic data:
Tsuji Y.Yamada N.Tanaka S. J. Org. Chem. 1993, 58: 16 - 17
Keinan E.Sahai M.Roth Z.Nudelman A.Herzig J. J. Org. Chem. 1985, 50: 3558 - 19
Tiecco M.Testaferri L.Temperini A.Bagnoli L.Marini F.Santi C. Synlett 2001, 1767 - 20
Knochel P.Rao CJ. Tetrahedron 1993, 49: 29 - 21
Renard M.Ghosez LA. Tetrahedron 2001, 57: 2597 - 22
Fukuzawa S.Takahashi K.Kato H.Yamazaki H. J. Org. Chem. 1997, 62: 7711 - 23
Hassner A.Reuss RH. J. Org. Chem. 1974, 39: 553 - 24
Ruasse MF.Argile A.Dubois JE. J. Am. Chem. Soc. 1978, 100: 7645
References and Notes
Typical Experimental Procedure.
The alkene (0.1 mmol) was dissolved in MeOH (7 mL) and tetraethylammonium bromide (0.1 mmol), diselenide (0.01 mmol) and H2SO4 (1 µL) were added. The electrodes were inserted into the reaction mixture and constant current of 3 mA applied. After 6 h, electrolysis was stopped and the MeOH removed in vacuo. The mixture was dissolved in Et2O, washed with NaHCO3 solution and H2O before drying over MgSO4. The products were purified by preparative TLC or column chromatography.
Spectroscopic data for 7a: 1H NMR (400 MHz, CDCl3): δ = 3.12 (s, 6 H), 3.65 (s, 3 H), 6.24 (d, J = 15.7 Hz, 1 H), 6.73 (d, J = 15.7 Hz, 1 H), 7.20-7.28 (m, 3 H), 7.38-7.40 (m, 2 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 49.7, 51.7, 100.9, 122.0, 126.9, 128.31, 128.33, 139.0, 147.8, 166.7 ppm. IR (NaCl): ν = 2950, 2832, 1727, 1659, 1449, 1436, 1304, 1276, 1192, 1167, 1072, 1046, 988, 700 cm-1. HRMS: m/z calcd for C13H16O4: 259.0941; found: 259.0941.
13Spectroscopic data for 3d: 1H NMR (400 MHz, CDCl3): δ = 1.07 (d, J = 6.1 Hz, 3 H), 1.13 (d, J = 6.1 Hz, 3 H), 3.57 (sept, J = 6.1 Hz, 1 H), 3.64 (s, 3 H), 4.95 (dd, J = 5.4, 1.4 Hz, 1 H), 6.02 (dd, J = 15.6, 1.4 Hz, 1 H), 6.91 (dd, J = 15.6, 5.4 Hz, 1 H), 7.19-7.30 (m, 5 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 21.8, 22.6, 51.6, 69.5, 77.8, 120.1, 127.3, 128.0, 128.7, 140.0, 148.8, 166.9 ppm. IR (NaCl): ν = 2971, 1725, 1659, 1453, 1435, 1298, 1272, 1167, 1120, 978, 699 cm-1. HRMS: m/z calcd for C14H18O3: 252.1594; found: 252.1593.
14Spectroscopic data for 3e: 1H NMR (400 MHz, CDCl3): δ = 2.06 (s, 3 H), 3.67 (s, 3 H), 5.97 (dd, J = 15.7, 1.5 Hz, 1 H), 6.32 (dd, J = 5.0, 1.5 Hz, 1 H), 6.95 (dd, J = 15.7, 5.0 Hz, 1 H), 7.27-7.31 (m, 5 H). 13C NMR (100 MHz, CDCl3): δ = 21.1, 51.8, 74.2, 121.2, 127.4, 128.83, 128.86, 137.1, 144.9, 166.4, 169.7. IR (NaCl): ν = 2952, 2918, 2849, 1738, 1727, 1662, 1436, 1372, 1310, 1279, 1228, 1197, 1171, 1069, 1022, 980, 699 cm-1. HRMS: m/z calcd for C13H14O4: 252.1230; found: 252.1229.
18Spectroscopic data for 7b: 1H NMR (400 MHz, CDCl3): δ = 3.11 (s, 6 H), 5.85 (d, J = 16.2 Hz, 1 H), 6.43 (d, J = 16.2 Hz, 1 H), 7.25-7.38 (m, 5 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 49.8, 100.2, 101.4, 116.8, 126.9, 128.6, 128.8, 137.8, 154.0 ppm. IR (NaCl): ν = 2916, 2848, 2228, 1732, 1450, 1261, 1226, 1191, 1159, 1071, 1047, 972, 774, 746, 702 cm-1. HRMS: m/z calcd for C12H13NO2: 221.1285; found: 221.1283.