Int J Sports Med 2006; 27(12): 959-967
DOI: 10.1055/s-2006-923849
Physiology & Biochemistry

© Georg Thieme Verlag KG Stuttgart · New York

Assessment of Ventilatory Thresholds from Heart Rate Variability in Well-Trained Subjects during Cycling

F. Cottin1 , P.-M. Leprêtre1 , P. Lopes1 , Y. Papelier3 , C. Médigue2 , V. Billat1
  • 1Laboratory of Exercise Physiology (LEPH), University of Evry, E. A. 3872 Genopole, Evry Cedex, France
  • 2French National Institute for Research in Computer Science and Control (INRIA), Le Chesnay, France
  • 3Laboratory of Physiology, Medicine Faculty, University of Paris XI, E. F. R., Hôpital Antoine Béclère, Clamart Cedex, France
Further Information

Publication History

Accepted after revision: December 5, 2005

Publication Date:
17 August 2006 (online)

Abstract

The purpose of this study was to implement a new method for assessing the ventilatory thresholds from heart rate variability (HRV) analysis. ECG, V·O2, V·CO2, and V·E were collected from eleven well-trained subjects during an incremental exhaustive test performed on a cycle ergometer. The “Short-Term Fourier Transform” analysis was applied to RR time series to compute the high frequency HRV energy (HF, frequency range: 0.15 - 2 Hz) and HF frequency peak (f HF) vs. power stages. For all subjects, visual examination of ventilatory equivalents, f HF, and instantaneous HF energy multiplied by f HF (HF · f HF) showed two nonlinear increases. The first nonlinear increase corresponded to the first ventilatory threshold (VT1) and was associated with the first HF threshold (TRSA1 from f HF and HFT1 from HF · f HF detection). The second nonlinear increase represented the second ventilatory threshold (VT2) and was associated with the second HF threshold (TRSA2 from f HF and HFT2 from HF · f HF detection). HFT1 , TRSA1, HFT2, and TRSA2 were, respectively, not significantly different from VT1 (VT1 = 219 ± 45 vs. HFT1 = 220 ± 48 W, p = 0.975; VT1 vs. TRSA1 = 213 ± 56 W, p = 0.662) and VT2 (VT2 = 293 ± 45 vs. HFT2 = 294 ± - 48 W, p = 0.956; vs. TRSA2 = 300 ± 58 W, p = 0.445). In addition, when expressed as a function of power, HFT1, TRSA1, HFT2, and TRSA2 were respectively correlated with VT1 (with HFT1 r² = 0.94, p < 0.001; with TRSA1 r² = 0.48, p < 0.05) and VT2 (with HFT2 r² = 0.97, p < 0.001; with TRSA2 r² = 0.79, p < 0.001). This study confirms that ventilatory thresholds can be determined from RR time series using HRV time-frequency analysis in healthy well-trained subjects. In addition it shows that HF · f HF provides a more reliable and accurate index than f HF alone for this assessment.

References

  • 1 Amann M, Subudhi A W, Walker J, Eisenman P, Shultz B, Foster C. An evaluation of the predictive validity and reliability of ventilatory threshold.  Med Sci Sports Exerc. 2004;  36 1716-1722
  • 2 Anosov O, Patzak A, Kononovich Y, Persson P B. High-frequency oscillations of the heart rate during ramp load reflect the human anaerobic threshold.  Eur J Appl Physiol. 2000;  83 388-394
  • 3 Aubert A E, Seps B, Beckers F. Heart rate variability in athletes.  Sports Med. 2003;  33 889-919
  • 4 Beaver W L, Wasserman K, Whipp B J. A new method for detecting anaerobic threshold by gas exchange.  J Appl Physiol. 1986;  60 2020-2027
  • 5 Blain G, Meste O, Bouchard T, Bermon S. Assessment of ventilatory thresholds during graded and maximal exercise test using time varying analysis of respiratory sinus arrhythmia.  Br J Sports Med. 2005;  39 448-452
  • 6 Blain G, Meste O, Bermon S. Influences of breathing patterns on respiratory sinus arrhythmia during exercise.  Am J Physiol. 2005;  288 H887-H895
  • 7 Bland J M, Altman D G. Statistical methods for assessing agreement between two methods of clinical measurement.  Lancet. 1986;  1 307-310
  • 8 Buchheit M, Richard R, Doutreleau S, Lonsdorfer-Wolf E, Brandenberger G, Simon C. Effect of acute hypoxia on heart rate variability at rest and during exercise.  Int J Sports Med. 2004;  25 264-269
  • 9 Casadei B, Moon J, Johnston J, Caiazza A, Sleight P. Is respiratory sinus arrhythmia a good index of cardiac vagal tone in exercise?.  J Appl Physiol. 1996;  81 556-564
  • 10 Clark J M, Hagerman F C, Gefland R. Breathing patterns during submaximal and maximal exercise in elite oarsmen.  J Appl Physiol. 1983;  55 440-446
  • 11 Cottin F, Médigue C, Lopes P, Petit E, Papelier Y, Billat V L. Heart rate variability analysis in horse trotting during exercise training.  Int J Sports Med. 2005;  26 859-867
  • 12 Cottin F, Médigue C, Leprêtre P M, Papelier Y, Koralsztein J P, Billat V L. Heart rate variability and dynamic cardio-respiratory interactions during exercise.  Med Sci Sports Exerc. 2004;  36 594-600
  • 13 Cottin F, Durbin F, Papelier Y. Heart rate variability during cycloergometric exercise or judo wrestling eliciting the same heart rate level.  Eur J Appl Physiol. 2004;  91 177-184
  • 14 Cottin F, Papelier Y, Durbin F, Koralsztein J P, Billat V L. Effect of fatigue on spontaneous velocity variations in human middle-distance running: use of Short Term Fourier Transform.  Eur J Appl Physiol. 2002;  87 17-27
  • 15 Cottin F, Papelier Y, Escourrou P. Effects of exercise load and breathing frequency on heart rate and blood pressure variability during dynamic exercise.  Int J Sports Med. 1999;  20 232-238
  • 16 Durnin J V, Womersley J. Body fat assessment from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged 16 to 76 years.  Br J Nutr. 1974;  32 77-97
  • 17 Gabor D. Theory of communication.  J Inst Electr Engin. 1946;  93 429-457
  • 18 Gallagher C G, Brown E, Younes M. Breathing pattern during maximal exercise and during submaximal exercise with hypercapnia.  J Appl Physiol. 1987;  63 238-244
  • 19 Gaskill S E, Ruby B C, Walker A J, Sanchez O A, Serfass R C, Leon A S. Validity and reliability of combining three methods to determine ventilatory threshold.  Med Sci Sports Exerc. 2001;  33 1841-1848
  • 20 Harris F J. On the use of windows for harmonic analysis with the discrete Fourier Transform.  Proc Inst Electr Electron Engin. 1978;  66 51-83
  • 21 James N W, Adams G M, Wilson A F. Determination of anaerobic threshold by ventilatory frequency.  Int J Sports Med. 1989;  10 192-196
  • 22 Kohl P, Hunter P, Noble D. Stretch-induced changes in heart rate and rhythm: clinical observations, experiments, and mathematical models.  Prog Biophys Mol Biol. 1999;  71 91-138
  • 23 Kohl P, Kamkin A G, Kiseleva S, Streubel T. Mechanosensitive cells in the atrium of frog heart.  Exp Physiol. 1992;  77 213-216
  • 24 Lange G, Lu H H, Chang A, Brooks C M. Effect of stretch on the isolated cat sinoatrial node.  Am J Physiol. 1966;  211 1192-1196
  • 25 Londeree B R. Effect of training on lactate/ventilatory thresholds: a meta-analysis.  Med Sci Sports Exerc. 1997;  29 837-843
  • 26 Macor F, Fagard R, Amery A. Power spectral analysis of RR interval and blood pressure short-term variability at rest and during dynamic exercise: comparison between cyclists and controls.  Int J Sports Med. 1996;  17 175-181
  • 27 Mc Laughlin J E, King G A, Howley E T, Basset D R, Ainsworth B F. Validation of the Cosmed K4b2 portable metabolic system.  Int J Sports Med. 2001;  22 280-284
  • 28 Pathak C L. Autoregulation of chronotropic response of the heart to pacemaker stretch.  Cardiology. 1973;  58 45-64
  • 29 Perlini S, Solda P L, Piepoli M, Sala-Gallini G, Calciati A, Finardi G, Bernardi L. Determinants of respiratory sinus arrhythmia in the vagotomized rabbit.  Am J Physiol. 1995;  269 H909-H915
  • 30 Rowell L B. Human Cardiovascular Control.  New York, USA: Oxford University Press,. 1993;  5 172-175
  • 31 Task force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology . Heart rate variability. Standards of measurement, physiological interpretation, and clinical use.  Circul. 1996;  93 1043-1065
  • 32 Tulppo M P, Mäkikallio T H, Seppänen T, Laukkanen R T, Huikuri H V. Vagal modulation of heart rate during exercise: effects of age and physical fitness.  Am J Physiol. 1998;  274 H424-H429
  • 33 Tulppo M P, Mäkikallio T H, Takala T ES, Seppänen T, Huikuri H V. Quantitative beat-to-beat analysis of heart rate dynamics during exercise.  Am J Physiol. 1996;  271 H244-H252
  • 34 Warren J H, Jaffe R S, Wraa C E, Stebbins C L. Effect of autonomic blockade on power spectrum of heart rate variability during exercise.  Am J Physiol. 1997;  273 R495-R502
  • 35 Wasserman K, Whipp B J, Koyal S N, Beaver W L. Anaerobic threshold and respiratory gas exchange during exercise.  J Appl Physiol. 1973;  35 236-243
  • 36 Wasserman K, Mc Ilroy M B. Detecting the threshold of anaerobic metabolism in cardiac patients during exercise.  Am J Cardiol. 1964;  14 844-852
  • 37 Yamamoto Y, Hughson R L, Nakamura Y. Autonomic nervous system responses to exercise in relation to ventilatory threshold.  Chest. 1992;  10 206S-210S
  • 38 Yamamoto Y, Hughson R L, Peterson J C. Autonomic control of heart rate during exercise studied by heart rate variability spectral analysis.  J Appl Physiol. 1991;  71 1136-1142

PhD François Cottin

Department of Sport and Exercise Science
University of Evry

Boulevard F. Mitterrand

91025 Evry Cedex

France

Phone: + 330169644881

Fax: + 33 01 69 64 48 95

Email: fcottin@univ-evry.fr