Int J Sports Med 2007; 28(5): 407-413
DOI: 10.1055/s-2006-924505
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Effect of Pool Length on Blood Lactate, Heart Rate, and Velocity in Swimming

O. P. Keskinen1 , K. L. Keskinen2 , A. A. Mero1
  • 1Department of Biology of Physical Activity, University of Jyväskylä, Jyväskylä, Finland
  • 2Finnish Society of Sport Sciences, Helsinki, Finland
Further Information

Publication History

Accepted after revision: July 20, 2006

Publication Date:
16 November 2006 (online)

Abstract

Exercise testing in water has been used to follow the progression of conditioning during regular training in swimmers. The present study examined the effects of pool length in eleven male swimmers on a set of 5 × 200-m freestyle swims with increasing speed from submaximal to maximal. Mean velocity of swimming, blood lactate and heart rate were examined in both 25-m and 50-m pools. Turning benefit as a marker for turning skill was measured separately by a underwater video system (speed difference between pre- and post-turning) during short all-out swims. Maximum force during swimming was measured in tethered swimming and explosive strength of leg extensor muscles was evaluated by a counter movement jump. The significantly higher (p = 0.033 - 0.000) blood lactate values for the 50-m pool as compared to the 25-m pool were found at each point of swimming velocity versus blood lactate curve. The highest post-test lactate level was 7.36 ± 1.47 mmol · l-1 in the short course and 8.24 ± 1.55 mmol · l-1 (p = 0.033) in the long course. The maximum swimming velocity was significantly greater (4.5 %) in the 25-m pool swimming (1.38 ± 0.11 m · s-1 vs. 1.32 ± 0.12 m · s-1; p = 0.000). The heart rate values were significantly (p = 0.020 - 0.000) lower in the short course than in the long course at all points of submaximal velocity with a mean difference of 7.3 ± 0.7 bpm. Heart rate was equal (172 ± 14 vs. 172 ± 14 bpm) after the maximum swims in both short and long course. The turning benefit in the short maximum swim was 0.12 ± 0.05 m · s-1 (8.1 ± 3.2 %), correlating positively with the difference in maximal swimming velocity between the short and long-pool swims (r = 0.59; p = 0.029), with the maximum force during tethered swimming (r = 0.75; p = 0.004) and with the vertical jumping height in the counter movement jump (r = 0.55; p = 0.039). We conclude that the pool length has a strong effect on blood lactate concentration and heart rate with greater swimming velocity in the short course pool.

References

  • 1 ACSM .American College of Sports Medicine. Guidelines for Exercise Testing and Prescription. 6th edition. Baltimore; Lippincott, Williams, and Wilkins 2000: 71
  • 2 Arabas C, Mayhew I L, Hudgins P M, Bond G H. Relationship among workrates, heart rates, and blood lactate levels in female swimmers.  J Sports Med. 1977;  27 291-295
  • 3 Brooks G A. The lactate shuttle during exercise and recovery.  Med Sci Sports Exerc. 1986;  18 360-368
  • 4 Böhringer-Mannheim. Test-Fibel. Enzymatische Bestimmung von Lactat im Plasma, Blut und Liquor [Enzymatic determination of lactate in plasma, blood and fluids]. Mannheim; Böhringer 1979
  • 5 Cellini M, Vitello P, Nagliati A, Martinelli S, Ballarin E, Conconi F. Noninvasive determination of the anaerobic threshold in swimming.  Int J Sports Med. 1986;  7 347-351
  • 6 Cheng B, Kuipers H, Snyder A C, Keizer H, Jeukendrup A, Hesselink M. A new approach for the determination of ventilatory and lactate thresholds.  Int J Sports Med. 1992;  7 518-522
  • 7 Craig A B. Breath holding during turn in competitive swimming.  Med Sci Sports Exerc. 1986;  18 402-407
  • 8 Davies C TM. Limitations to the prediction of maximum oxygen intake from cardiac frequency measurements.  J Appl Physiol. 1968;  24 700-706
  • 9 Foxdal P, Sjodin A, Sjodin B. Comparison of blood lactate concentrations obtained during incremental and constant intensity exercise.  Int J Sports Med. 1996;  17 360-365
  • 10 Greiwe J S, Kaminsky L A, Whaley M H, Dwyer G B. Evaluation of the ACSM submaximal ergometer test for estimating VO2max.  Med Sci Sports Exerc. 1995;  27 1315-1320
  • 11 Gullstrand L, Holmer I. Fysiologiska tester av landslagssimmare: Anaerob energileveransmätningen av blodmjölksyra.  Simsport. 1980;  3 15-17
  • 12 Haljand R. A new scientific approach to analyzing swimming technique. Creamer JL How to Develop Olympic Level Swimmers. Helsinki; Int Sports Media 1984: 70-105
  • 13 Ivy J L, Costill D L, Van Handel P J. Alteration in the lactate threshold with changes in substrate availability.  Int J Sports Med. 1981;  2 139-142
  • 14 Keskinen K L, Komi P V, Rusko H. Comparative study of blood lactate tests in swimming.  Int J Sports Med. 1989;  10 197-201
  • 15 Keskinen K L, Tilli L J, Komi P V. Maximum velocity swimming: interrelationships of stroking characteristics, force production and anthropometric variables.  Scand J Sports Sci. 1989;  11 87-92
  • 16 Keskinen K L, Komi P V. Intracycle variation in force, velocity and power as a measure of technique performance during front crawl swimming. Bouisset S, Métral S, Monod H Proceedings of the XIV ISB Congress of Biomechanics. Paris, France; ISB 1993: 676-677
  • 17 Keskinen K L, Keskinen O P, Mero A. Effect of pool length on biomechanical performance in front crawl swimming. Troup JP, Hollander AP, Strasse D, Trappe SW, Cappaert JM, Trappe TA Biomechanics and Medicine in Swimming VII. London; E & FN Spon, Chapman & Hall 1996: 216-220
  • 18 Komi P V, Bosco C. Utilisation of stored elastic energy in men and women.  Med Sci Sports Exerc. 1978;  4 261-265
  • 19 Lamb D R, Rinehardt K F, Bartels R L, Sherman W M, Snook J T. Dietary carbohydrate and intensity of interval swim training.  Am J Clin Nutr. 1990;  52 1058-1063
  • 20 Lowensteyn I, Perry A C, Nash M S, Salhanich D. Differences in peak blood lactate concentration in long course versus short course swimming.  J Swimming Res. 1994;  10 31-34
  • 21 Maassen N, Busse M W. The relationship between lactic acid and work load: a measure for endurance capacity or an indicator of carbohydrate deficiency?.  Eur J Appl Physiol. 1989;  58 728-737
  • 22 Mader A, Heck H, Hollman W. A computer simulation model of energy output in relation to metabolic rate and internal environment. Knuttgen H, Vogel J, Poortmans J Biochemistry of Exercise. Vol. 13. Boston; Human Kinetics 1982: 239-251
  • 23 Mader A, Heck H, Hollmann W. Evaluation of lactic acid anaerobic energy contribution by determination of post exercise lactic acid concentration of ear capillary blood in middle distance runners and swimmers. Landing F, Orban W Exercise Physiology. Vol. 4. Miami; Symposia Specialists 1976: 187-200
  • 24 Olbrecht J, Mader A, Madsen O, Liesen H, Hollman W. The relationship between swimming velocity and lactic concentration during continuous and intermittent training exercises.  Int J Sports Med. 1985;  6 74-77
  • 25 Peyrebrune M C, Hardy C A. Heart rate and lactate responses to swimming. MacLaren D, Reilly T, Lees A Biomechanics and Medicine in Swimming. Swimming Science VI. London; E & FN Spon, Chapman & Hall 1992: 235-241
  • 26 Reilly T, Woodbridge V. Effects of moderate dietary manipulations on swim performance and on blood lactate-swimming velocity curves.  Int J Sports Med. 1999;  20 93-97
  • 27 Shimoyama Y, Nomura T. Role of rest interval during interval training at OBLA speed. Keskinen KL, Komi PV, Hollander AP Biomechanics and Medicine in Swimming VIII. Jyväskylä, Finland; Gummerus Printing 1999: 459-464
  • 28 Simon G, Thiesmann M, Clasing D, Frohberger V. Ergometrie im Wasser - eine neue Methode der Leistungsdiagnostik. Köln; Sport, Leistung und Gesundheit 1982: 139-143
  • 29 Stegmann H, Kindermann W. Comparison of prolonged exercise tests at the individual anaerobic threshold and the fixed anaerobic threshold of 4 mmol/l lactate.  Int J Sports Med. 1982;  3 105-110
  • 30 Telford R D, Hahn A G, Catchpole E A, Parker A R, Sweetenham W F. Post-competition blood lactate concentrations in highly ranked Australian Swimmers. Ungerechts BE, Wilke K, Reischle K Swimming Science V. Int Series Sport Sci. Champaign, IL; Human Kinetics 1988: 277-283
  • 31 Torma Z D, Szekely G. Parameters of acid-base equilibrium at various swimming intensities and distances. Ericksson B, Furberg B Swimming Medicine IV. Int Series Sport Sci, vol. 7. Baltimore; University Park Press 1978: 274-281
  • 32 Treffene R J, Alloway J, Shaw J. Use of heart rate in the determination of swimming efficiency. Eriksson B, Furberg B Swimming Medicine IV. Int Series Sport Sci, Vol. 7. Baltimore; University Park Press 1978: 132-136
  • 33 Treffene R J, Alloway J, Jull J. Use of a heart rate meter in swimming and athletic performance measurement. Terauds J, Bedingfield EW Swimming III. Int Series Sport Sci, Vol. 8. Baltimore; University Park Press 1979: 275-280
  • 34 Wakayoshi K, Nomura T, Takahashi G, Mutoh Y, Miyashita M. Analysis of swimming races in the 1989 Pan Pacific swimming championships and 1988 Japanese Olympic trials. MacLaren D, Reilly T, Lees A Biomechanics and Medicine in Swimming. Swimming Science VI. London; E & FN Spon, Chapman & Hall 1992: 135-141
  • 35 Wakayoshi K, Tatesada E, Ono K, Terada A, Ogita F. Blood lactate response to various combinations of swimming velocity and rest period of interval training. Keskinen KL, Komi PV, Hollander AP Biomechanics and Medicine in Swimming VIII. Jyväskylä, Finland; Gummerus Printing 1999: 401-406
  • 36 Wirtz W, Wilke K, Zimmermann F. Velocity, distance per stroke and stroke frequency of highly skilled swimmers in 50-m freestyle sprint in a 50 and 25-m pool. MacLaren D, Reilly T, Lees A Biomechanics and Medicine in Swimming. Swimming Science VI. London; E & FN Spon, Chapman & Hall 1992: 131-134
  • 37 Yoshida T. Effect of dietary modifications on lactate threshold and onset of blood lactate accumulation during incremental exercise.  Eur J Appl Physiol. 1984;  53 200-205

Ossi P. Keskinen

University of Jyväskylä

P. O. Box 35

40014 Jyväskylä

Finland

Email: okeskine@sport.jyu.fi