Semin Thromb Hemost 2006; 32(2): 128-145
DOI: 10.1055/s-2006-939769
Copyright © 2006 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Platelet Activation in Hemolytic Uremic Syndrome

Diana Karpman1 , Minola Manea1 , Fariba Vaziri-Sani1 , Anne-lie Ståhl1 , Ann-Charlotte Kristoffersson1
  • 1Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
Further Information

Publication History

Publication Date:
30 March 2006 (online)

ABSTRACT

Platelet consumption in platelet-fibrin aggregates leading to thrombocytopenia and small vessel obstruction are major features of the hemolytic uremic syndrome (HUS). Although thrombocytopenia has been correlated to poor prognosis, the mechanisms by which thrombocytopenia develops in HUS have not been completely elucidated. However, plausible explanations have been platelet contact with thrombogenic surfaces and/or direct contact with an aggregating agent. This article summarizes several mechanisms of platelet activation, interactions with leukocytes, chemokine release, complement activation, and antimicrobial defense. Specific mechanisms are outlined by which platelets may be activated, leading to thrombocytopenia during HUS. In diarrhea-associated HUS Shiga toxin has been shown to injure the endothelium, thus exposing the subendothelium, releasing tissue factor, and rendering the vessel wall prothrombotic. Shiga toxin also binds to and activates platelets. The toxin may activate endothelial cells and platelets simultaneously. In atypical HUS the alternative complement pathway is activated because of mutations in complement regulatory proteins. Mutated factor H does not bind to endothelium and platelets efficiently, enabling complement activation on these cells. In thrombotic thrombocytopenic purpura, intravascular platelet clotting occurs due to dysfunction of the von Willebrand factor (VWF) -cleaving protease ADAMTS13. Thrombi are formed by binding of platelets to ultralarge VWF multimers.

REFERENCES

  • 1 Andrews R K, Berndt M C. Platelet physiology and thrombosis.  Thromb Res. 2004;  114 447-453
  • 2 Klinger M H, Jelkmann W. Role of blood platelets in infection and inflammation.  J Interferon Cytokine Res. 2002;  22 913-922
  • 3 Klinger M. Inflammation. In: Michelson AD Platelets. San Diego, CA; Elsevier Science 2002: 459-467
  • 4 Yeaman M R, Bayer A S. Antimicrobial host defense. In: Michelson AD Platelets. San Diego, CA; Elsevier Science 2002: 469-490
  • 5 Karpatkin S. Tumor growth and metastasis. In: Michelson AD Platelets. San Diego, CA; Elsevier Science 2002: 491-502
  • 6 Clemetson K J. Platelet receptors. In: Michelson AD Platelets. San Diego, CA; Elsevier Science 2002: 65-84
  • 7 Rivera J, Lozano M L, Corral J, Gonzalez-Conejero R, Martinez C, Vicente V. Platelet GP Ib/IX/V complex: physiological role.  J Physiol Biochem. 2000;  56 355-365
  • 8 Payrastre B, Missy K, Trumel C, Bodin S, Plantavid M, Chap H. The integrin alpha IIb/beta 3 in human platelet signal transduction.  Biochem Pharmacol. 2000;  60 1069-1074
  • 9 Kauf A C, Hough S M, Bowditch R D. Recognition of fibronectin by the platelet integrin alpha IIb beta 3 involves an extended interface with multiple electrostatic interactions.  Biochemistry. 2001;  40 9159-9166
  • 10 Perutelli P, Mori P G. The human platelet membrane glycoprotein IIb/IIIa complex: a multi functional adhesion receptor.  Haematologica. 1992;  77 162-168
  • 11 Leon C, Hechler B, Freund M et al.. Defective platelet aggregation and increased resistance to thrombosis in purinergic P2Y(1) receptor-null mice.  J Clin Invest. 1999;  104 1731-1737
  • 12 Fabre J E, Nguyen M, Latour A et al.. Decreased platelet aggregation, increased bleeding time and resistance to thromboembolism in P2Y1-deficient mice.  Nat Med. 1999;  5 1199-1202
  • 13 Vu T K, Hung D T, Wheaton V I, Coughlin S R. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation.  Cell. 1991;  64 1057-1068
  • 14 Kahn M L, Nakanishi-Matsui M, Shapiro M J, Ishihara H, Coughlin S R. Protease-activated receptors 1 and 4 mediate activation of human platelets by thrombin.  J Clin Invest. 1999;  103 879-887
  • 15 Moore K L, Patel K D, Bruehl R E et al.. P-selectin glycoprotein ligand-1 mediates rolling of human neutrophils on P-selectin.  J Cell Biol. 1995;  128 661-671
  • 16 Malhotra R, Priest R, Foster M R, Bird M I. P-selectin binds to bacterial lipopolysaccharide.  Eur J Immunol. 1998;  28 983-988
  • 17 Del Conde I, Cruz M A, Zhang H, Lopez J A, Afshar-Kharghan V. Platelet activation leads to activation and propagation of the complement system.  J Exp Med. 2005;  201 871-879
  • 18 Lawler K, Meade G, O'sullivan G, Kenny D. Shear stress modulates the interaction of platelet-secreted matrix proteins with tumor cells through the integrin alphavbeta3.  Am J Physiol Cell Physiol. 2004;  287 C1320-C1327
  • 19 Moroi M, Onitsuka I, Imaizumi T, Jung S M. Involvement of activated integrin alpha2beta1 in the firm adhesion of platelets onto a surface of immobilized collagen under flow conditions.  Thromb Haemost. 2000;  83 769-776
  • 20 Piotrowicz R S, Orchekowski R P, Nugent D J, Yamada K Y, Kunicki T J. Glycoprotein Ic-IIa functions as an activation-independent fibronectin receptor on human platelets.  J Cell Biol. 1988;  106 1359-1364
  • 21 Sonnenberg A, Modderman P W, Hogervorst F. Laminin receptor on platelets is the integrin VLA-6.  Nature. 1988;  336 487-489
  • 22 Narumiya S, Ushikubi F, Nakajima M, Hirata M, Okuma M. Purification and characterization of the human platelet TXA2/PGH2 receptor.  Adv Prostaglandin Thromboxane Leukot Res. 1991;  21A 339-346
  • 23 Armstrong R A. Platelet prostanoid receptors.  Pharmacol Ther. 1996;  72 171-191
  • 24 Katsuyama M, Sugimoto Y, Namba T et al.. Cloning and expression of a cDNA for the human prostacyclin receptor.  FEBS Lett. 1994;  344 74-78
  • 25 Diacovo T G, deFougerolles A R, Bainton D F, Springer T A. A functional integrin ligand on the surface of platelets: intercellular adhesion molecule-2.  J Clin Invest. 1994;  94 1243-1251
  • 26 Weber C, Springer T A. Neutrophil accumulation on activated, surface-adherent platelets in flow is mediated by interaction of Mac-1 with fibrinogen bound to alphaIIbbeta3 and stimulated by platelet-activating factor.  J Clin Invest. 1997;  100 2085-2093
  • 27 Patil S, Newman D K, Newman P J. Platelet endothelial cell adhesion molecule-1 serves as an inhibitory receptor that modulates platelet responses to collagen.  Blood. 2001;  97 1727-1732
  • 28 Tandon N N, Kralisz U, Jamieson G A. Identification of glycoprotein IV (CD36) as a primary receptor for platelet-collagen adhesion.  J Biol Chem. 1989;  264 7576-7583
  • 29 Ikeda H. Platelet membrane protein CD36.  Hokkaido Igaku Zasshi. 1999;  74 99-104
  • 30 Endemann G, Stanton L W, Madden K S, Bryant C M, White R T, Protter A A. CD36 is a receptor for oxidized low density lipoprotein.  J Biol Chem. 1993;  268 11811-11816
  • 31 Coelho A M, Ossovskaya V, Bunnett N W. Proteinase-activated receptor-2: physiological and pathophysiological roles.  Curr Med Chem Cardiovasc Hematol Agents. 2003;  1 61-72
  • 32 Burgers J A, Akkerman J W. Regulation of the receptor for platelet-activating factor on human platelets.  Biochem J. 1993;  291(pt 1) 157-161
  • 33 Gear A R, Suttitanamongkol S, Viisoreanu D, Polanowska-Grabowska R K, Raha S, Camerini D. Adenosine diphosphate strongly potentiates the ability of the chemokines MDC, TARC, and SDF-1 to stimulate platelet function.  Blood. 2001;  97 937-945
  • 34 Abi-Younes S, Si-Tahar M, Luster A D. The CC chemokines MDC and TARC induce platelet activation via CCR4.  Thromb Res. 2001;  101 279-289
  • 35 Gear A R, Camerini D. Platelet chemokines and chemokine receptors: linking hemostasis, inflammation, and host defense.  Microcirculation. 2003;  10 335-350
  • 36 Gratacap M P, Payrastre B, Viala C, Mauco G, Plantavid M, Chap H. Phosphatidylinositol 3,4,5-trisphosphate-dependent stimulation of phospholipase C-gamma2 is an early key event in FcgammaRIIA-mediated activation of human platelets.  J Biol Chem. 1998;  273 24314-24321
  • 37 Joseph M, Gounni A S, Kusnierz J P et al.. Expression and functions of the high-affinity IgE receptor on human platelets and megakaryocyte precursors.  Eur J Immunol. 1997;  27 2212-2218
  • 38 Hasegawa S, Pawankar R, Suzuki K et al.. Functional expression of the high affinity receptor for IgE (FcepsilonRI) in human platelets and its intracellular expression in human megakaryocytes.  Blood. 1999;  93 2543-2551
  • 39 Clifford E E, Parker K, Humphreys B D, Kertesy S B, Dubyak G R. The P2X1 receptor, an adenosine triphosphate-gated cation channel, is expressed in human platelets but not in human blood leukocytes.  Blood. 1998;  91 3172-3181
  • 40 Kagaya A, Mikuni M, Yamamoto H, Muraoka S, Yamawaki S, Takahashi K. Heterologous supersensitization between serotonin2 and alpha 2-adrenergic receptor-mediated intracellular calcium mobilization in human platelets.  J Neural Transm Gen Sect. 1992;  88 25-36
  • 41 Cooling L L, Walker K E, Gille T, Koerner T A. Shiga toxin binds human platelets via globotriaosylceramide (Pk antigen) and a novel platelet glycosphingolipid.  Infect Immun. 1998;  66 4355-4366
  • 42 Nunez D, Charriaut-Marlangue C, Barel M, Benveniste J, Frade R. Activation of human platelets through gp140, the C3d/EBV receptor (CR2).  Eur J Immunol. 1987;  17 515-520
  • 43 Vik D P, Fearon D T. Cellular distribution of complement receptor type 4 (CR4): expression on human platelets.  J Immunol. 1987;  138 254-258
  • 44 Cosgrove L J, d'Apice A J, Haddad A, Pedersen J, McKenzie I F. CR3 receptor on platelets and its role in the prostaglandin metabolic pathway.  Immunol Cell Biol. 1987;  65(pt 6) 453-460
  • 45 Peerschke E I, Ghebrehiwet B. Platelet membrane receptors for the complement component C1q.  Semin Hematol. 1994;  31 320-328
  • 46 Nicholson-Weller A, March J P, Rosen C E, Spicer D B, Austen K F. Surface membrane expression by human blood leukocytes and platelets of decay-accelerating factor, a regulatory protein of the complement system.  Blood. 1985;  65 1237-1244
  • 47 Yu G H, Holers V M, Seya T, Ballard L, Atkinson J P. Identification of a third component of complement-binding glycoprotein of human platelets.  J Clin Invest. 1986;  78 494-501
  • 48 Morgan B P. Isolation and characterization of the complement-inhibiting protein CD59 antigen from platelet membranes.  Biochem J. 1992;  282(pt 2) 409-413
  • 49 Philippeaux M M, Vesin C, Tacchini-Cottier F, Piguet P F. Activated human platelets express beta2 integrin.  Eur J Haematol. 1996;  56 130-137
  • 50 Piguet P F, Vesin C, Rochat A. Beta2 integrin modulates platelet caspase activation and life span in mice.  Eur J Cell Biol. 2001;  80 171-177
  • 51 Roth G J. Platelets and blood vessels: the adhesion event.  Immunol Today. 1992;  13 100-105
  • 52 Savage B, Saldivar E, Ruggeri Z M. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor.  Cell. 1996;  84 289-297
  • 53 Clemetson K J. Platelet membrane glycoprotein I: structure and function. The domain of glycoprotein I involved in the von Willebrand receptor.  Blood Cells. 1983;  9 319-329
  • 54 Hato T GM, Shattil S J. Integrin alphaIIbbeta3. In: Michelson AD Platelets. San Diego, CA; Elsevier Science 2002: 105-116
  • 55 Ikeda Y, Handa M, Kawano K et al.. The role of von Willebrand factor and fibrinogen in platelet aggregation under varying shear stress.  J Clin Invest. 1991;  87 1234-1240
  • 56 Goto S, Salomon D R, Ikeda Y, Ruggeri Z M. Characterization of the unique mechanism mediating the shear-dependent binding of soluble von Willebrand factor to platelets.  J Biol Chem. 1995;  270 23352-23361
  • 57 Tsai H M. Platelet activation and the formation of the platelet plug: deficiency of ADAMTS13 causes thrombotic thrombocytopenic purpura.  Arterioscler Thromb Vasc Biol. 2003;  23 388-396
  • 58 Shattil S J, Kashiwagi H, Pampori N. Integrin signaling: the platelet paradigm.  Blood. 1998;  91 2645-2657
  • 59 Hantgan R R, Paumi C, Rocco M, Weisel J W. Effects of ligand-mimetic peptides Arg-Gly-Asp-X (X = Phe, Trp, Ser) on alphaIIbbeta3 integrin conformation and oligomerization.  Biochemistry. 1999;  38 14461-14474
  • 60 Chung J, Gao A G, Frazier W A. Thrombospondin acts via integrin-associated protein to activate the platelet integrin alphaIIbbeta3.  J Biol Chem. 1997;  272 14740-14746
  • 61 Frenette P S, Johnson R C, Hynes R O, Wagner D D. Platelets roll on stimulated endothelium in vivo: an interaction mediated by endothelial P-selectin.  Proc Natl Acad Sci U S A. 1995;  92 7450-7454
  • 62 Frenette P S, Denis C V, Weiss L et al.. P-Selectin glycoprotein ligand 1 (PSGL-1) is expressed on platelets and can mediate platelet-endothelial interactions in vivo.  J Exp Med. 2000;  191 1413-1422
  • 63 Padilla A, Moake J L, Bernardo A et al.. P-selectin anchors newly released ultralarge von Willebrand factor multimers to the endothelial cell surface.  Blood. 2004;  103 2150-2156
  • 64 McEver R P. P-Selectin/PGSL-1 and other interactions between platelets, leukocytes and endothelium. In: Michelson AD Platelets. San Diego, CA; Elsevier Science 2002: 139-155
  • 65 Michelson A D, Barnard M R, Krueger L A, Valeri C R, Furman M I. Circulating monocyte-platelet aggregates are a more sensitive marker of in vivo platelet activation than platelet surface P-selectin: studies in baboons, human coronary intervention, and human acute myocardial infarction.  Circulation. 2001;  104 1533-1537
  • 66 Simon D I, Chen Z, Xu H et al.. Platelet glycoprotein ibalpha is a counterreceptor for the leukocyte integrin Mac-1 (CD11b/CD18).  J Exp Med. 2000;  192 193-204
  • 67 Lishko V K, Podolnikova N P, Yakubenko V P et al.. Multiple binding sites in fibrinogen for integrin alphaMbeta2 (Mac-1).  J Biol Chem. 2004;  279 44897-44906
  • 68 Ma Y Q, Plow E F, Geng J G. P-selectin binding to P-selectin glycoprotein ligand-1 induces an intermediate state of alphaMbeta2 activation and acts cooperatively with extracellular stimuli to support maximal adhesion of human neutrophils.  Blood. 2004;  104 2549-2556
  • 69 Bernardo A, Ball C, Nolasco L, Choi H, Moake J L, Dong J F. Platelets adhered to endothelial cell-bound ultra-large von Willebrand factor strings support leukocyte tethering and rolling under high shear stress.  J Thromb Haemost. 2005;  3 562-570
  • 70 Ahn K C, Jun A J, Pawar P et al.. Preferential binding of platelets to monocytes over neutrophils under flow.  Biochem Biophys Res Commun. 2005;  329 345-355
  • 71 Cambien B, Wagner D D. A new role in hemostasis for the adhesion receptor P-selectin.  Trends Mol Med. 2004;  10 179-186
  • 72 Herzberg M C. Coagulation and thrombosis in cardiovascular disease: plausible contributions of infectious agents.  Ann Periodontol. 2001;  6 16-19
  • 73 Schwartz B S, Monroe M C. Human platelet aggregation is initiated by peripheral blood mononuclear cells exposed to bacterial lipopolysaccharide in vitro.  J Clin Invest. 1986;  78 1136-1141
  • 74 Deuel T F, Senior R M, Chang D, Griffin G L, Heinrikson R L, Kaiser E T. Platelet factor 4 is chemotactic for neutrophils and monocytes.  Proc Natl Acad Sci U S A. 1981;  78 4584-4587
  • 75 Deuel T F, Senior R M, Huang J S, Griffin G L. Chemotaxis of monocytes and neutrophils to platelet-derived growth factor.  J Clin Invest. 1982;  69 1046-1049
  • 76 Aziz K A, Cawley J C, Zuzel M. Platelets prime PMN via released PF4: mechanism of priming and synergy with GM-CSF.  Br J Haematol. 1995;  91 846-853
  • 77 Kameyoshi Y, Dorschner A, Mallet A I, Christophers E, Schroder J M. Cytokine RANTES released by thrombin-stimulated platelets is a potent attractant for human eosinophils.  J Exp Med. 1992;  176 587-592
  • 78 Brandt E, Petersen F, Ludwig A, Ehlert J E, Bock L, Flad H D. The beta-thromboglobulins and platelet factor 4: blood platelet-derived CXC chemokines with divergent roles in early neutrophil regulation.  J Leukoc Biol. 2000;  67 471-478
  • 79 Car B D, Baggiolini M, Walz A. Formation of neutrophil-activating peptide 2 from platelet-derived connective-tissue-activating peptide III by different tissue proteinases.  Biochem J. 1991;  275(Pt 3) 581-584
  • 80 Freedman J E, Loscalzo J. Nitric oxide and its relationship to thrombotic disorders.  J Thromb Haemost. 2003;  1 1183-1188
  • 81 Freedman J E, Loscalzo J, Barnard M R, Alpert C, Keaney J F, Michelson A D. Nitric oxide released from activated platelets inhibits platelet recruitment.  J Clin Invest. 1997;  100 350-356
  • 82 Zhou Q, Hellermann G R, Solomonson L P. Nitric oxide release from resting human platelets.  Thromb Res. 1995;  77 87-96
  • 83 van Goor H, Albrecht E W, Heeringa P et al.. Nitric oxide inhibition enhances platelet aggregation in experimental anti-Thy-1 nephritis.  Nitric Oxide. 2001;  5 525-533
  • 84 Cambien B, Bergmeier W, Saffaripour S, Mitchell H A, Wagner D D. Antithrombotic activity of TNF-alpha.  J Clin Invest. 2003;  112 1589-1596
  • 85 Yeaman M R, Sullam P M, Dazin P F, Norman D C, Bayer A S. Characterization of Staphylococcus aureus-platelet binding by quantitative flow cytometric analysis.  J Infect Dis. 1992;  166 65-73
  • 86 Alugupalli K R, Michelson A D, Barnard M R et al.. Platelet activation by a relapsing fever spirochaete results in enhanced bacterium-platelet interaction via integrin alphaIIbbeta3 activation.  Mol Microbiol. 2001;  39 330-340
  • 87 Bensing B A, Siboo I R, Sullam P M. Proteins PblA and PblB of Streptococcus mitis, which promote binding to human platelets, are encoded within a lysogenic bacteriophage.  Infect Immun. 2001;  69 6186-6192
  • 88 Siboo I R, Cheung A L, Bayer A S, Sullam P M. Clumping factor A mediates binding of Staphylococcus aureus to human platelets.  Infect Immun. 2001;  69 3120-3127
  • 89 Cheung A L, Krishnan M, Jaffe E A, Fischetti V A. Fibrinogen acts as a bridging molecule in the adherence of Staphylococcus aureus to cultured human endothelial cells.  J Clin Invest. 1991;  87 2236-2245
  • 90 Vinter D W, Burkel W E, Wakefield T W et al.. Radioisotope-labeled platelet studies and infection of vascular grafts.  J Vasc Surg. 1984;  1 921 , (Lett)
  • 91 Clawson C C, Rao G H, White J G. Platelet interaction with bacteria. IV. Stimulation of the release reaction.  Am J Pathol. 1975;  81 411-420
  • 92 Clawson C C, White J G. Platelet interaction with bacteria. II. Fate of the bacteria.  Am J Pathol. 1971;  65 381-397
  • 93 Ford I, Douglas C W, Cox D, Rees D G, Heath J, Preston F E. The role of immunoglobulin G and fibrinogen in platelet aggregation by Streptococcus sanguis. .  Br J Haematol. 1997;  97 737-746
  • 94 Ford I, Douglas C W, Heath J, Rees C, Preston F E. Evidence for the involvement of complement proteins in platelet aggregation by Streptococcus sanguis NCTC 7863.  Br J Haematol. 1996;  94 729-739
  • 95 Copley A L, Maupin B, Balea T. The agglutinant and adhesive behaviour of isolated human and rabbit platelets in contact with various strains of mycobacteria.  Acta Tuberc Scand. 1959;  37 151-161
  • 96 Youssefian T, Drouin A, Masse J M, Guichard J, Cramer E M. Host defense role of platelets: engulfment of HIV and Staphylococcus aureus occurs in a specific subcellular compartment and is enhanced by platelet activation.  Blood. 2002;  99 4021-4029
  • 97 Weksler B B, Nachman R L. Rabbit platelet bactericidal protein.  J Exp Med. 1971;  134 1114-1130
  • 98 Dankert J, van der Werff J, Zaat S A, Joldersma W, Klein D, Hess J. Involvement of bactericidal factors from thrombin-stimulated platelets in clearance of adherent viridans streptococci in experimental infective endocarditis.  Infect Immun. 1995;  63 663-671
  • 99 Koo S P, Yeaman M R, Nast C C, Bayer A S. The cytoplasmic membrane is a primary target for the staphylocidal action of thrombin-induced platelet microbicidal protein.  Infect Immun. 1997;  65 4795-4800
  • 100 Tang Y Q, Yeaman M R, Selsted M E. Antimicrobial peptides from human platelets.  Infect Immun. 2002;  70 6524-6533
  • 101 Kitagawa S, Fujisawa H, Kametani F, Sakurai H. Generation of active oxygen species in blood platelets-spin trapping analysis.  Free Radic Res Commun. 1992;  15 319-324
  • 102 Sullam P M, Frank U, Yeaman M R, Tauber M G, Bayer A S, Chambers H F. Effect of thrombocytopenia on the early course of streptococcal endocarditis.  J Infect Dis. 1993;  168 910-914
  • 103 Arvand M, Bhakdi S, Dahlback B, Preissner K T. Staphylococcus aureus alpha-toxin attack on human platelets promotes assembly of the prothrombinase complex.  J Biol Chem. 1990;  265 14377-14381
  • 104 Stohlawetz P, Folman C C, von dem Borne A E et al.. Effects of endotoxemia on thrombopoiesis in men.  Thromb Haemost. 1999;  81 613-617
  • 105 Itoh H, Cicala C, Douglas G J, Page C P. Platelet accumulation induced by bacterial endotoxin in rats.  Thromb Res. 1996;  83 405-419
  • 106 Shibazaki M, Nakamura M, Endo Y. Biphasic, organ-specific, and strain-specific accumulation of platelets induced in mice by a lipopolysaccharide from Escherichia coli and its possible involvement in shock.  Infect Immun. 1996;  64 5290-5294
  • 107 Yang Z, Carter C D, Miller M S, Bochsler P N. CD14 and tissue factor expression by bacterial lipopolysaccharide-stimulated bovine alveolar macrophages in vitro.  Infect Immun. 1995;  63 51-56
  • 108 Wilson M, Blum R, Dandona P, Mousa S. Effects in humans of intravenously administered endotoxin on soluble cell-adhesion molecule and inflammatory markers: a model of human diseases.  Clin Exp Pharmacol Physiol. 2001;  28 376-380
  • 109 Isenman D E, Kells D I, Cooper N R, Muller-Eberhard H J, Pangburn M K. Nucleophilic modification of human complement protein C3: correlation of conformational changes with acquisition of C3b-like functional properties.  Biochemistry. 1981;  20 4458-4467
  • 110 Law S K, Dodds A W. The internal thioester and the covalent binding properties of the complement proteins C3 and C4.  Protein Sci. 1997;  6 263-274
  • 111 Weksler B B, Coupal C E. Platelet-dependent generation of chemotactic activity in serum.  J Exp Med. 1973;  137 1419-1430
  • 112 Zimmerman T S, Kolb W P. Human platelet-initiated formation and uptake of the C5-9 complex of human complement.  J Clin Invest. 1976;  57 203-211
  • 113 Hansch G M, Gemsa D, Resch K. Induction of prostanoid synthesis in human platelets by the late complement components C5b-9 and channel forming antibiotic nystatin: inhibition of the reacylation of liberated arachidonic acid.  J Immunol. 1985;  135 1320-1324
  • 114 Spycher M O, Nydegger U E. Participation of the blood platelet in immune reactions due to platelet-complement interaction.  Infusionsther Transfusionsmed. 1995;  22 36-43
  • 115 Dixon R H, Rosse W F. Mechanism of complement-mediated activation of human blood platelets in vitro: comparison of normal and paroxysmal nocturnal hemoglobinuria platelets.  J Clin Invest. 1977;  59 360-368
  • 116 Shattil S J, Cines D B, Schreiber A D. Increased fluidity of human platelet membranes during complement-mediated immune platelet injury.  J Clin Invest. 1978;  61 582-589
  • 117 Martin S E, Breckenridge R T, Rosenfeld S I, Leddy J P. Responses of human platelets to immunologic stimuli: independent roles for complement and IgG in zymosan activation.  J Immunol. 1978;  120 9-14
  • 118 Wiedmer T, Esmon C T, Sims P J. Complement proteins C5b-9 stimulate procoagulant activity through platelet prothrombinase.  Blood. 1986;  68 875-880
  • 119 Polley M J, Nachman R L, Weksler B B. Human complement in the arachidonic acid transformation pathway in platelets.  J Exp Med. 1981;  153 257-268
  • 120 Endresen G K, Mellbye O J. Studies on the binding of complement factor C3 to the surface of human blood platelets.  Haemostasis. 1984;  14 269-280
  • 121 Sandvik T, Endresen G K, Forre O. Studies on the binding of complement factor C4 in human platelets. Complement activation by means of cold agglutinins.  Int Arch Allergy Appl Immunol. 1984;  74 152-157
  • 122 Houle J J, Leddy J P, Rosenfeld S I. Secretion of the terminal complement proteins, C5-C9, by human platelets.  Clin Immunol Immunopathol. 1989;  50 385-393
  • 123 Ekdahl K N, Nilsson B. Phosphorylation of complement component C3 and C3 fragments by a human platelet protein kinase. Inhibition of factor I-mediated cleavage of C3b.  J Immunol. 1995;  154 6502-6510
  • 124 Polley M J, Nachman R L. Human complement in thrombin-mediated platelet function: uptake of the C5b-9 complex.  J Exp Med. 1979;  150 633-645
  • 125 Betz M, Seitz M, Hansch G M. Thromboxane B2 synthesis in human platelets induced by the late complement components C5b-9.  Int Arch Allergy Appl Immunol. 1987;  82 313-316
  • 126 Polley M J, Nachman R L. Human platelet activation by C3a and C3a des-arg.  J Exp Med. 1983;  158 603-615
  • 127 Davis III A E, Kenney D M. Properdin factor D: effects on thrombin-induced platelet aggregation.  J Clin Invest. 1979;  64 721-728
  • 128 Kenney D M, Davis III A E. Association of alternative complement pathway components with human blood platelets: secretion and localization of factor D and beta 1H Globulin.  Clin Immunol Immunopathol. 1981;  21 351-363
  • 129 Cines D B, Schreiber A D. Immune thrombocytopenia. Use of a Coombs antiglobulin test to detect IgG and C3 on platelets.  N Engl J Med. 1979;  300 106-111
  • 130 Hed J. Role of complement in immune or idiopathic thrombocytopenic purpura.  Acta Paediatr Suppl. 1998;  424 37-40
  • 131 Rinder C S, Gaal D, Student L A, Smith B R. Platelet-leukocyte activation and modulation of adhesion receptors in pediatric patients with congenital heart disease undergoing cardiopulmonary bypass.  J Thorac Cardiovasc Surg. 1994;  107 280-288
  • 132 Rinder C S, Rinder H M, Smith B R et al.. Blockade of C5a and C5b-9 generation inhibits leukocyte and platelet activation during extracorporeal circulation.  J Clin Invest. 1995;  96 1564-1572
  • 133 Zipfel P F, Skerka C. FHL-1/reconectin: a human complement and immune regulator with cell-adhesive function.  Immunol Today. 1999;  20 135-140
  • 134 Devine D V, Rosse W F. Regulation of the activity of platelet-bound C3 convertase of the alternative pathway of complement by platelet factor H.  Proc Natl Acad Sci USA. 1987;  84 5873-5877
  • 135 Alexander J J, Hack B K, Cunningham P N, Quigg R J. A protein with characteristics of factor H is present on rodent platelets and functions as the immune adherence receptor.  J Biol Chem. 2001;  276 32129-32135
  • 135a Vaziri-Sani F, Holmberg L, Sjöholm A G et al.. Phenotypic expression of factor H mutations in patients with atypical hemolytic uremic syndrome.  Kidney Intl. 2006;  , doi:10.1038
  • 136 Carron J A, Bates R C, Smith A I et al.. Factor H co-purifies with thrombospondin isolated from platelet secretate.  Biochim Biophys Acta. 1996;  1289 305-311
  • 137 Vaziri-Sani F, Hellwage J, Zipfel P F, Sjoholm A G, Iancu R, Karpman D. Factor H binds to washed human platelets.  J Thromb Haemost. 2005;  3 154-162
  • 138 Alexander J J, Pickering M C, Haas M, Osawe I, Quigg R J. Complement factor h limits immune complex deposition and prevents inflammation and scarring in glomeruli of mice with chronic serum sickness.  J Am Soc Nephrol. 2005;  16 52-57
  • 139 Devine D V, Siegel R S, Rosse W F. Interactions of the platelets in paroxysmal nocturnal hemoglobinuria with complement. Relationship to defects in the regulation of complement and to platelet survival in vivo.  J Clin Invest. 1987;  79 131-137
  • 140 Vu T, Griscelli-Bennaceur A, Gluckman E et al.. Aplastic anaemia and paroxysmal nocturnal haemoglobinuria: a study of the GPI-anchored proteins on human platelets.  Br J Haematol. 1996;  93 586-589
  • 141 Young N S. Paroxysmal nocturnal hemoglobinuria: current issues in pathophysiology and treatment.  Curr Hematol Rep. 2005;  4 103-109
  • 142 Schwalbe R, Dahlback B, Hillarp A, Nelsestuen G. Assembly of protein S and C4b-binding protein on membranes.  J Biol Chem. 1990;  265 16074-16081
  • 143 Seya T, Nakamura K, Masaki T, Ichihara-Itoh C, Matsumoto M, Nagasawa S. Human factor H and C4b-binding protein serve as factor I-cofactors both encompassing inactivation of C3b and C4b.  Mol Immunol. 1995;  32 355-360
  • 144 Taylor F B, Coller B S, Chang A C et al.. 7E3 F(ab')2, a monoclonal antibody to the platelet GPIIb/IIIa receptor, protects against microangiopathic hemolytic anemia and microvascular thrombotic renal failure in baboons treated with C4b binding protein and a sublethal infusion of Escherichia coli .  Blood. 1997;  89 4078-4084
  • 145 Barnes J L. Renal disease. In: Michelson AD Platelets. San Diego, CA; Elsevier Science 2002: 447-457
  • 146 Barnes J L. Platelets in glomerular disease.  Nephron. 1997;  77 378-393
  • 147 Barnes J L, Hevey K A. Glomerular mesangial cell migration. Response to platelet secretory products.  Am J Pathol. 1991;  138 859-866
  • 148 Clark W F, Lewis M L, Cameron J S, Parsons V. Intrarenal platelet consumption in the diffuse proliferative nephritis of systemic lupus erythematosus.  Clin Sci Mol Med. 1975;  49 247-252
  • 149 Parbtani A, Frampton G, Cameron J S. Platelet and plasma serotonin concentrations in glomerulonephritis, II.  Clin Nephrol. 1980;  14 112-123
  • 150 Duffus P, Parbtani A, Frampton G, Cameron J S. Intraglomerular localization of platelet related antigens, platelet factor 4 and beta-thromboglobulin in glomerulonephritis.  Clin Nephrol. 1982;  17 288-297
  • 151 Meehan S M, Limsrichamrern S, Manaligod J R et al.. Platelets and capillary injury in acute humoral rejection of renal allografts.  Hum Pathol. 2003;  34 533-540
  • 152 Zoja C, Remuzzi G. Role of platelets in progressive glomerular diseases.  Pediatr Nephrol. 1995;  9 495-502
  • 153 Peters H, Eisenberg R, Daig U et al.. Platelet inhibition limits TGF-beta overexpression and matrix expansion after induction of anti-thy1 glomerulonephritis.  Kidney Int. 2004;  65 2238-2248
  • 154 Boccardo P, Remuzzi G, Galbusera M. Platelet dysfunction in renal failure.  Semin Thromb Hemost. 2004;  30 579-589
  • 155 Steiner R W, Coggins C, Carvalho A C. Bleeding time in uremia: a useful test to assess clinical bleeding.  Am J Hematol. 1979;  7 107-117
  • 156 Escolar G, Cases A, Bastida E et al.. Uremic platelets have a functional defect affecting the interaction of von Willebrand factor with glycoprotein IIb-IIIa.  Blood. 1990;  76 1336-1340
  • 157 Benigni A, Boccardo P, Galbusera M et al.. Reversible activation defect of the platelet glycoprotein IIb-IIIa complex in patients with uremia.  Am J Kidney Dis. 1993;  22 668-676
  • 158 Aiello S, Noris M, Remuzzi G. Nitric oxide/L-arginine in uremia.  Miner Electrolyte Metab. 1999;  25 384-390
  • 159 Karmali M A, Petric M, Lim C, Fleming P C, Arbus G S, Lior H. The association between idiopathic hemolytic uremic syndrome and infection by verotoxin-producing Escherichia coli. .  J Infect Dis. 1985;  151 775-782
  • 160 Koster F, Levin J, Walker L et al.. Hemolytic-uremic syndrome after shigellosis. Relation to endotoxemia and circulating immune complexes.  N Engl J Med. 1978;  298 927-933
  • 161 Proulx F, Seidman E G, Karpman D. Pathogenesis of Shiga toxin-associated hemolytic uremic syndrome.  Pediatr Res. 2001;  50 163-171
  • 162 Karpman D, Hakansson A, Perez M T et al.. Apoptosis of renal cortical cells in the hemolytic-uremic syndrome: in vivo and in vitro studies.  Infect Immun. 1998;  66 636-644
  • 163 Habib R. Pathology of the hemolytic uremic syndrome. In: Kaplan BS, Trompeter RS, Moake JL Hemolytic Uremic Syndrome and Thrombotic Thrombocytopenic Purpura. New York; Marcel Dekker 1992: 315-353
  • 164 Inward C D, Howie A J, Fitzpatrick M M, Rafaat F, Milford D V, Taylor C M. Renal histopathology in fatal cases of diarrhoea-associated haemolytic uraemic syndrome. British Association for Paediatric Nephrology.  Pediatr Nephrol. 1997;  11 556-559
  • 165 Tsai H M, Chandler W L, Sarode R et al.. von Willebrand factor and von Willebrand factor-cleaving metalloprotease activity in Escherichia coli O157:H7-associated hemolytic uremic syndrome.  Pediatr Res. 2001;  49 653-659
  • 166 Robson W L, Fick G H, Wilson P C. Prognostic factors in typical postdiarrhea hemolytic-uremic syndrome.  Child Nephrol Urol. 1988;  9 203-207
  • 167 Lopez E L, Devoto S, Fayad A, Canepa C, Morrow A L, Cleary T G. Association between severity of gastrointestinal prodrome and long-term prognosis in classic hemolytic-uremic syndrome.  J Pediatr. 1992;  120 210-215
  • 168 Brandt J R, Joseph M W, Fouser L S et al.. Cholelithiasis following Escherichia coli O157:H7-associated hemolytic uremic syndrome.  Pediatr Nephrol. 1998;  12 222-225
  • 169 Bolande R P, Kaplan B S. Experimental studies on the hemolytic-uremic syndrome.  Nephron. 1985;  39 228-236
  • 170 Fong J S, Kaplan B S. Impairment of platelet aggregation in hemolytic uremic syndrome: evidence for platelet “exhaustion.”  Blood. 1982;  60 564-570
  • 171 Sassetti B, Vizcarguenaga M I, Zanaro N L et al.. Hemolytic uremic syndrome in children: platelet aggregation and membrane glycoproteins.  J Pediatr Hematol Oncol. 1999;  21 123-128
  • 172 Walters M D, Levin M, Smith C et al.. Intravascular platelet activation in the hemolytic uremic syndrome.  Kidney Int. 1988;  33 107-115
  • 173 Karpman D, Papadopoulou D, Nilsson K, Sjogren A C, Mikaelsson C, Lethagen S. Platelet activation by Shiga toxin and circulatory factors as a pathogenetic mechanism in the hemolytic uremic syndrome.  Blood. 2001;  97 3100-3108
  • 173a Stâhl A-L, Svensson M, Mörgelin M et al.. Lipopolysaccharide from enterohemorrhagic Escherichia coli binds to platelets via TLR4 and CD62 and is detected on circulating platelets in patients with hemolytic uremic syndrome.  Blood. 2006;  , in press
  • 174 Galli M, Grassi A, Barbui T. Platelet-derived microvesicles in thrombotic thrombocytopenic purpura and hemolytic uremic syndrome.  Thromb Haemost. 1996;  75 427-431
  • 175 Appiani A C, Edefonti A, Bettinelli A, Cossu M M, Paracchini M L, Rossi E. The relationship between plasma levels of the factor VIII complex and platelet release products (beta-thromboglobulin and platelet factor 4) in children with the hemolytic-uremic syndrome.  Clin Nephrol. 1982;  17 195-199
  • 176 Katayama M, Handa M, Araki Y et al.. Soluble P-selectin is present in normal circulation and its plasma level is elevated in patients with thrombotic thrombocytopenic purpura and haemolytic uraemic syndrome.  Br J Haematol. 1993;  84 702-710
  • 177 Chandler W L, Jelacic S, Boster D R et al.. Prothrombotic coagulation abnormalities preceding the hemolytic-uremic syndrome.  N Engl J Med. 2002;  346 23-32
  • 178 van de Kar N C, van Hinsbergh V W, Brommer E J, Monnens L A. The fibrinolytic system in the hemolytic uremic syndrome: in vivo and in vitro studies.  Pediatr Res. 1994;  36 257-264
  • 179 Nevard C H, Jurd K M, Lane D A, Philippou H, Haycock G B, Hunt B J. Activation of coagulation and fibrinolysis in childhood diarrhoea-associated haemolytic uraemic syndrome.  Thromb Haemost. 1997;  78 1450-1455
  • 180 Van Geet C, Proesmans W, Arnout J, Vermylen J, Declerck P J. Activation of both coagulation and fibrinolysis in childhood hemolytic uremic syndrome.  Kidney Int. 1998;  54 1324-1330
  • 181 Tarr P I, Gordon C A, Chandler W L. Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome.  Lancet. 2005;  365 1073-1086
  • 182 te Loo D M, Heuvelink A E, de Boer E et al.. Vero cytotoxin binding to polymorphonuclear leukocytes among households with children with hemolytic uremic syndrome.  J Infect Dis. 2001;  184 446-450
  • 183 Te Loo D M, van Hinsbergh V W, van den Heuvel L P, Monnens L A. Detection of verocytotoxin bound to circulating polymorphonuclear leukocytes of patients with hemolytic uremic syndrome.  J Am Soc Nephrol. 2001;  12 800-806
  • 184 Tazzari P L, Ricci F, Carnicelli D et al.. Flow cytometry detection of Shiga toxins in the blood from children with hemolytic uremic syndrome.  Cytometry B Clin Cytom. 2004;  61 40-44
  • 185 van Setten P A, Monnens L A, Verstraten R G, van den Heuvel L P, van Hinsbergh V W. Effects of verocytotoxin-1 on nonadherent human monocytes: binding characteristics, protein synthesis, and induction of cytokine release.  Blood. 1996;  88 174-183
  • 186 Coratelli P, Buongiorno E, Passavanti G. Endotoxemia in hemolytic uremic syndrome.  Nephron. 1988;  50 365-367
  • 187 Holloway S, Senior D, Roth L, Tisher C C. Hemolytic uremic syndrome in dogs.  J Vet Intern Med. 1993;  7 220-227
  • 188 Cowan L A, Hertzke D M, Fenwick B W, Andreasen C B. Clinical and clinicopathologic abnormalities in greyhounds with cutaneous and renal glomerular vasculopathy: 18 cases (1992-1994).  J Am Vet Med Assoc. 1997;  210 789-793
  • 189 Fenwick B WCL. Canine model of hemolytic uremic syndrome. In: Escherichia coli O157:H7 and other Toxin-Producing E. coli Strains. Washington DC; ASM Press 1998: 268-277
  • 190 Karpman D, Connell H, Svensson M, Scheutz F, Alm P, Svanborg C. The role of lipopolysaccharide and Shiga-like toxin in a mouse model of Escherichia coli O157:H7 infection.  J Infect Dis. 1997;  175 611-620
  • 191 Pai C H, Kelly J K, Meyers G L. Experimental infection of infant rabbits with verotoxin-producing Escherichia coli. .  Infect Immun. 1986;  51 16-23
  • 192 Francis D H, Collins J E, Duimstra J R. Infection of gnotobiotic pigs with an Escherichia coli O157:H7 strain associated with an outbreak of hemorrhagic colitis.  Infect Immun. 1986;  51 953-956
  • 193 Tzipori S, Chow C W, Powell H R. Cerebral infection with Escherichia coli O157:H7 in humans and gnotobiotic piglets.  J Clin Pathol. 1988;  41 1099-1103
  • 194 Fujii J, Kita T, Yoshida S et al.. Direct evidence of neuron impairment by oral infection with verotoxin-producing Escherichia coli O157:H- in mitomycin-treated mice.  Infect Immun. 1994;  62 3447-3453
  • 195 Wadolkowski E A, Sung L M, Burris J A, Samuel J E, O'Brien A D. Acute renal tubular necrosis and death of mice orally infected with Escherichia coli strains that produce Shiga-like toxin type II.  Infect Immun. 1990;  58 3959-3965
  • 196 Raife T, Friedman K D, Fenwick B. Lepirudin prevents lethal effects of Shiga toxin in a canine model.  Thromb Haemost. 2004;  92 387-393
  • 197 Taylor Jr F B, Tesh V L, DeBault L et al.. Characterization of the baboon responses to Shiga-like toxin: descriptive study of a new primate model of toxic responses to Stx-1.  Am J Pathol. 1999;  154 1285-1299
  • 198 Siegler R L, Pysher T J, Tesh V L, Taylor Jr F B. Response to single and divided doses of Shiga toxin-1 in a primate model of hemolytic uremic syndrome.  J Am Soc Nephrol. 2001;  12 1458-1467
  • 199 Cunningham M A, Rondeau E, Chen X, Coughlin S R, Holdsworth S R, Tipping P G. Protease-activated receptor 1 mediates thrombin-dependent, cell-mediated renal inflammation in crescentic glomerulonephritis.  J Exp Med. 2000;  191 455-462
  • 200 Tarr P. Shiga toxin-induced thrombotic microangiopathy: a thrombin-dependent process?.  Thromb Haemost. 2004;  92 227-228
  • 201 Bertani T, Abbate M, Zoja C, Corna D, Remuzzi G. Sequence of glomerular changes in experimental endotoxemia: a possible model of hemolytic uremic syndrome.  Nephron. 1989;  53 330-337
  • 202 Butler T, Rahman H, Al-Mahmud K A et al.. An animal model of haemolytic-uraemic syndrome in shigellosis: lipopolysaccharides of Shigella dysenteriae I and S. flexneri produce leucocyte-mediated renal cortical necrosis in rabbits.  Br J Exp Pathol. 1985;  66 7-15
  • 203 Siegler R L, Pysher T J, Lou R, Tesh V L, Taylor Jr F B. Response to Shiga toxin-1, with and without lipopolysaccharide, in a primate model of hemolytic uremic syndrome.  Am J Nephrol. 2001;  21 420-425
  • 204 Jaffe E A, Hoyer L W, Nachman R L. Synthesis of von Willebrand factor by cultured human endothelial cells.  Proc Natl Acad Sci USA. 1974;  71 1906-1909
  • 205 Inward C D, Pall A A, Adu D, Milford D V, Taylor C M. Soluble circulating cell adhesion molecules in haemolytic uraemic syndrome.  Pediatr Nephrol. 1995;  9 574-578
  • 206 Obrig T G, Del Vecchio P J, Brown J E et al.. Direct cytotoxic action of Shiga toxin on human vascular endothelial cells.  Infect Immun. 1988;  56 2373-2378
  • 207 Louise C B, Obrig T G. Shiga toxin-associated hemolytic-uremic syndrome: combined cytotoxic effects of Shiga toxin, interleukin-1 beta, and tumor necrosis factor alpha on human vascular endothelial cells in vitro.  Infect Immun. 1991;  59 4173-4179
  • 208 Louise C B, Obrig T G. Shiga toxin-associated hemolytic uremic syndrome: combined cytotoxic effects of shiga toxin and lipopolysaccharide (endotoxin) on human vascular endothelial cells in vitro.  Infect Immun. 1992;  60 1536-1543
  • 209 Tesh V L, Samuel J E, Perera L P, Sharefkin J B, O'Brien A D. Evaluation of the role of Shiga and Shiga-like toxins in mediating direct damage to human vascular endothelial cells.  J Infect Dis. 1991;  164 344-352
  • 210 Keusch G T, Acheson D W, Aaldering L, Erban J, Jacewicz M S. Comparison of the effects of Shiga-like toxin 1 on cytokine- and butyrate-treated human umbilical and saphenous vein endothelial cells.  J Infect Dis. 1996;  173 1164-1170
  • 211 van de Kar N C, Monnens L A, Karmali M A, van Hinsbergh V W. Tumor necrosis factor and interleukin-1 induce expression of the verocytotoxin receptor globotriaosylceramide on human endothelial cells: implications for the pathogenesis of the hemolytic uremic syndrome.  Blood. 1992;  80 2755-2764
  • 212 Obrig T G, Louise C B, Lingwood C A, Boyd B, Barley-Maloney L, Daniel T O. Endothelial heterogeneity in Shiga toxin receptors and responses.  J Biol Chem. 1993;  268 15484-15488
  • 213 Louise C B, Obrig T G. Specific interaction of Escherichia coli O157:H7-derived Shiga-like toxin II with human renal endothelial cells.  J Infect Dis. 1995;  172 1397-1401
  • 214 Moake J L. Haemolytic-uraemic syndrome: basic science.  Lancet. 1994;  343 393-397
  • 214a Nolasco L H, Turner N A, Bernardo A et al.. Hemolytic uremic syndrome-associated Shiga toxins promote endothelial-cell secretion and impair ADAMTS13 cleavage of unusually large von Willebrand factor multimers.  Blood. 2005;  106 4199-4209
  • 215 Ishii H, Takada K, Higuchi T, Sugiyama J. Verotoxin-1 induces tissue factor expression in human umbilical vein endothelial cells through activation of NF-kappaB/Rel and AP-1.  Thromb Haemost. 2000;  84 712-721
  • 216 Nestoridi E, Tsukurov O, Kushak R I, Ingelfinger J R, Grabowski E F. Shiga toxin enhances functional tissue factor on human glomerular endothelial cells: implications for the pathophysiology of hemolytic uremic syndrome.  J Thromb Haemost. 2005;  3 752-762
  • 217 Kamitsuji H, Nonami K, Murakami T, Ishikawa N, Nakayama A, Umeki Y. Elevated tissue factor circulating levels in children with hemolytic uremic syndrome caused by verotoxin-producing E. coli. .  Clin Nephrol. 2000;  53 319-324
  • 218 Morigi M, Galbusera M, Binda E et al.. Verotoxin-1-induced up-regulation of adhesive molecules renders microvascular endothelial cells thrombogenic at high shear stress.  Blood. 2001;  98 1828-1835
  • 219 Louise C B, Obrig T G. Human renal microvascular endothelial cells as a potential target in the development of the hemolytic uremic syndrome as related to fibrinolysis factor expression, in vitro.  Microvasc Res. 1994;  47 377-387
  • 220 Karch H, Bitzan M, Pietsch R et al.. Purified verotoxins of Escherichia coli O157:H7 decrease prostacyclin synthesis by endothelial cells.  Microb Pathog. 1988;  5 215-221
  • 221 Adler S, Bollu R. Glomerular endothelial cell injury mediated by Shiga-like toxin-1.  Kidney Blood Press Res. 1998;  21 13-21
  • 222 Zoja C, Angioletti S, Donadelli R et al.. Shiga toxin-2 triggers endothelial leukocyte adhesion and transmigration via NF-kappaB dependent up-regulation of IL-8 and MCP-1.  Kidney Int. 2002;  62 846-856
  • 223 Rose P E, Armour J A, Williams C E, Hill F G. Verotoxin and neuraminidase induced platelet aggregating activity in plasma: their possible role in the pathogenesis of the haemolytic uraemic syndrome.  J Clin Pathol. 1985;  38 438-441
  • 224 Ghosh S A, Polanowska-Grabowska R K, Fujii J, Obrig T, Gear A R. Shiga toxin binds to activated platelets.  J Thromb Haemost. 2004;  2 499-506
  • 225 Herlitz H, Petersson A, Sigstrom L, Wennmalm A, Westberg G. The arginine-nitric oxide pathway in thrombotic microangiopathy.  Scand J Urol Nephrol. 1997;  31 477-479
  • 226 Dran G I, Fernandez G C, Rubel C J et al.. Protective role of nitric oxide in mice with Shiga toxin-induced hemolytic uremic syndrome.  Kidney Int. 2002;  62 1338-1348
  • 227 Thorpe C M, Smith W E, Hurley B P, Acheson D W. Shiga toxins induce, superinduce, and stabilize a variety of C-X-C chemokine mRNAs in intestinal epithelial cells, resulting in increased chemokine expression.  Infect Immun. 2001;  69 6140-6147
  • 228 Matussek A, Lauber J, Bergau A et al.. Molecular and functional analysis of Shiga toxin-induced response patterns in human vascular endothelial cells.  Blood. 2003;  102 1323-1332
  • 228a Guessous F, Marcinkiewicz M, Polanowska-Grabowska R, Keepers T R, Obrig T, Gear A R. Shiga toxin 2 and lipopolysaccharide cause monocytic THP-1 cells to release factors which activate platelet function.  Thromb Haemost. 2005;  94 1019-1027
  • 228b Guessous F, Marcinkiewicz M, Polanowska-Grabowska R et al.. Shiga toxin 2 and lipopolysaccharide induce human microvascular endothelial cells to release chemokines and factors that stimulate platelet function.  Infect Immun. 2005;  73 8306-8316
  • 229 Fitzpatrick M M, Walters M D, Trompeter R S, Dillon M J, Barratt T M. Atypical (non-diarrhea-associated) hemolytic-uremic syndrome in childhood.  J Pediatr. 1993;  122 532-537
  • 230 Kaplan B S, Chesney R W, Drummond K N. Hemolytic uremic syndrome in families.  N Engl J Med. 1975;  292 1090-1093
  • 231 Ying L, Katz Y, Schlesinger M et al.. Complement factor H gene mutation associated with autosomal recessive atypical hemolytic uremic syndrome.  Am J Hum Genet. 1999;  65 1538-1546
  • 232 Warwicker P, Goodship T H, Donne R L et al.. Genetic studies into inherited and sporadic hemolytic uremic syndrome.  Kidney Int. 1998;  53 836-844
  • 233 Caprioli J, Bettinaglio P, Zipfel P F et al.. The molecular basis of familial hemolytic uremic syndrome: mutation analysis of factor H gene reveals a hot spot in short consensus repeat 20.  J Am Soc Nephrol. 2001;  12 297-307
  • 234 Fremeaux-Bacchi V, Dragon-Durey M A, Blouin J et al.. Complement factor I: a susceptibility gene for atypical haemolytic uraemic syndrome.  J Med Genet. 2004;  41 e84
  • 234a Kavanagh D, Kemp E J, Mayland E et al.. Mutations in complement factor I predispose to development of atypical hemolytic uremic syndrome.  J Am Soc Nephrol. 2005;  16 2150-2155
  • 235 Richards A, Kemp E J, Liszewski M K et al.. Mutations in human complement regulator, membrane cofactor protein (CD46), predispose to development of familial hemolytic uremic syndrome.  Proc Natl Acad Sci USA. 2003;  100 12966-12971
  • 236 Noris M, Brioschi S, Caprioli J et al.. Familial haemolytic uraemic syndrome and an MCP mutation.  Lancet. 2003;  362 1542-1547
  • 236a Esparza-Gordillo J, Jorge E G, Garrido C A et al.. Insights into hemolytic uremic syndrome: Segregation of three independent predisposition factors in a large, multiple affected pedigree.  Mol Immunol. 2005;  , doi:10.1016/j.molimm.2005.11.008
  • 236b Esparza-Gordillo J, Goicoechea de Jorge E, Buil A et al.. Predisposition to atypical hemolytic uremic syndrome involves the concurrence of different susceptibility alleles in the regulators of complement activation gene cluster in 1q32.  Hum Mol Genet. 2005;  14 703-712
  • 237 Pangburn M K. Host recognition and target differentiation by factor H, a regulator of the alternative pathway of complement.  Immunopharmacology. 2000;  49 149-157
  • 238 Manuelian T, Hellwage J, Meri S et al.. Mutations in factor H reduce binding affinity to C3b and heparin and surface attachment to endothelial cells in hemolytic uremic syndrome.  J Clin Invest. 2003;  111 1181-1190
  • 239 Hindmarsh E J, Marks R M. Complement activation occurs on subendothelial extracellular matrix in vitro and is initiated by retraction or removal of overlying endothelial cells.  J Immunol. 1998;  160 6128-6136
  • 240 Riley-Vargas R C, Gill D B, Kemper C, Liszewski M K, Atkinson J P. CD46: expanding beyond complement regulation.  Trends Immunol. 2004;  25 496-503
  • 241 Asada Y, Sumiyoshi A, Hayashi T, Suzumiya J, Kaketani K. Immunohistochemistry of vascular lesion in thrombotic thrombocytopenic purpura, with special reference to factor VIII related antigen.  Thromb Res. 1985;  38 469-479
  • 242 Gordon L I, Kwaan H C, Rossi E C. Deleterious effects of platelet transfusions and recovery thrombocytosis in patients with thrombotic microangiopathy.  Semin Hematol. 1987;  24 194-201
  • 243 Furlan M, Robles R, Solenthaler M, Wassmer M, Sandoz P, Lämmle B. Deficient activity of von Willebrand factor-cleaving protease in chronic relapsing thrombotic thrombocytopenic purpura.  Blood. 1997;  89 3097-3103
  • 244 Furlan M, Robles R, Galbusera M et al.. von Willebrand factor-cleaving protease in thrombotic thrombocytopenic purpura and the hemolytic-uremic syndrome.  N Engl J Med. 1998;  339 1578-1584
  • 245 Tsai H M, Lian E C. Antibodies to von Willebrand factor-cleaving protease in acute thrombotic thrombocytopenic purpura.  N Engl J Med. 1998;  339 1585-1594
  • 246 Dent J A, Berkowitz S D, Ware J, Kasper C K, Ruggeri Z M. Identification of a cleavage site directing the immunochemical detection of molecular abnormalities in type IIA von Willebrand factor.  Proc Natl Acad Sci USA. 1990;  87 6306-6310
  • 247 Fujikawa K, Suzuki H, McMullen B, Chung D. Purification of human von Willebrand factor-cleaving protease and its identification as a new member of the metalloproteinase family.  Blood. 2001;  98 1662-1666
  • 248 Gerritsen H E, Robles R, Lammle B, Furlan M. Partial amino acid sequence of purified von Willebrand factor-cleaving protease.  Blood. 2001;  98 1654-1661
  • 249 Zheng X, Chung D, Takayama T K, Majerus E M, Sadler J E, Fujikawa K. Structure of von Willebrand factor-cleaving protease (ADAMTS13), a metalloprotease involved in thrombotic thrombocytopenic purpura.  J Biol Chem. 2001;  276 41059-41063
  • 250 Soejima K, Mimura N, Hirashima M et al.. A novel human metalloprotease synthesized in the liver and secreted into the blood: possibly, the von Willebrand factor-cleaving protease?.  J Biochem (Tokyo). 2001;  130 475-480
  • 251 Levy G G, Nichols W C, Lian E C et al.. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura.  Nature. 2001;  413 488-494
  • 252 Bianchi V, Robles R, Alberio L, Furlan M, Lämmle B. Von Willebrand factor-cleaving protease (ADAMTS13) in thrombocytopenic disorders: a severely deficient activity is specific for thrombotic thrombocytopenic purpura.  Blood. 2002;  100 710-713
  • 253 Tsai H M, Nagel R L, Hatcher V B, Seaton A C, Sussman I I. The high molecular weight form of endothelial cell von Willebrand factor is released by the regulated pathway.  Br J Haematol. 1991;  79 239-245
  • 254 Tsai H M, Nagel R L, Hatcher V B, Sussman I I. Multimeric composition of endothelial cell-derived von Willebrand factor.  Blood. 1989;  73 2074-2076
  • 255 Dong J F, Moake J L, Bernardo A et al.. ADAMTS-13 metalloprotease interacts with the endothelial cell-derived ultra-large von Willebrand factor.  J Biol Chem. 2003;  278 29633-29639
  • 256 Dong J F, Moake J L, Nolasco L et al.. ADAMTS-13 rapidly cleaves newly secreted ultralarge von Willebrand factor multimers on the endothelial surface under flowing conditions.  Blood. 2002;  100 4033-4039
  • 257 Tsai H M, Sussman I I, Nagel R L. Shear stress enhances the proteolysis of von Willebrand factor in normal plasma.  Blood. 1994;  83 2171-2179
  • 258 Moake J L, Rudy C K, Troll J H et al.. Unusually large plasma factor VIII:von Willebrand factor multimers in chronic relapsing thrombotic thrombocytopenic purpura.  N Engl J Med. 1982;  307 1432-1435
  • 259 Moake J L, Turner N A, Stathopoulos N A, Nolasco L H, Hellums J D. Involvement of large plasma von Willebrand factor (vWF) multimers and unusually large vWF forms derived from endothelial cells in shear stress-induced platelet aggregation.  J Clin Invest. 1986;  78 1456-1461
  • 260 Arya M, Anvari B, Romo G M et al.. Ultralarge multimers of von Willebrand factor form spontaneous high-strength bonds with the platelet glycoprotein Ib-IX complex: studies using optical tweezers.  Blood. 2002;  99 3971-3977
  • 261 Karpman D, Lethagen S, Kristoffersson A, Isaksson C, von Holmberg L. Willebrand factor mediates increased platelet retention in recurrent thrombotic thrombocytopenic purpura.  Thromb Haemost. 1997;  78 1456-1462
  • 261a Savage B, Almus-Jacobs F, Ruggeri Z M. Specific synergy of multiple substrate-receptor interactions in platelet thrombus formation under flow.  Cell. 1998;  94 657-666
  • 262 Nishio K, Anderson P J, Zheng X L, Sadler J E. Binding of platelet glycoprotein Ibalpha to von Willebrand factor domain A1 stimulates the cleavage of the adjacent domain A2 by ADAMTS13.  Proc Natl Acad Sci USA. 2004;  101 10578-10583
  • 263 Ruiz-Torres M P, Casiraghi F, Galbusera M, Macconi D, Gastoldi S, Todeschini M, Porrati F, Belotti D, Pogliani E M, Noris M, Remuzzi G. Complement activation: the missing link between ADAMTS-13 deficiency and microvascular thrombosis of thrombotic microangiopathies.  Thromb Haemost. 2005;  93 443-452

Diana KarpmanM.D. Ph.D. 

Associate Professor, Department of Pediatrics, Clinical Sciences Lund

Lund University, 22185 Lund, Sweden

Email: Diana.Karpman@med.lu.se